【題目】已知橢圓C: + =1(a>b>0)的左右焦點(diǎn)分別為F1 , F2 , 拋物線y2=4x與橢圓C有相同的焦點(diǎn),且橢圓C過(guò)點(diǎn) . (I)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若橢圓C的右頂點(diǎn)為A,直線l交橢圓C于E、F兩點(diǎn)(E、F與A點(diǎn)不重合),且滿足AE⊥AF,若點(diǎn)P為EF中點(diǎn),求直線AP斜率的最大值.
【答案】解:(Ⅰ)由題意可得:拋物線y2=4x的焦點(diǎn)(1,0)與橢圓C有相同的焦點(diǎn),即c=1, a2=b2+c2=b2+1,
由橢圓C過(guò)點(diǎn) ,代入橢圓方程: ,解得:a=2,b= ,
則橢圓的標(biāo)準(zhǔn)方程為 ;
(Ⅱ)設(shè)直線AE的方程為y=k(x﹣2),
則 ,可得(3+4k2)x2﹣16k2x+16k2﹣12=0,
由2+xE= ,可得xE= ,yE=k(xE﹣2)=﹣ ,
由于AE⊥AF,只要將上式的k換為﹣ ,可得xF= ,yF= ,
由P為EF的中點(diǎn),
即有P( , ),
則直線AP的斜率為t= = ,
當(dāng)k=0時(shí),t=0;當(dāng)k≠0時(shí),t= ,
再令s= ﹣k,可得t= ,
當(dāng)s=0時(shí),t=0;當(dāng)s>0時(shí),t= ≤ = ,
當(dāng)且僅當(dāng)4s= 時(shí),取得最大值;
綜上可得直線AP的斜率的最大值為
【解析】(I)由題意可知:拋物線y2=4x的焦點(diǎn)(1,0),c=1,將點(diǎn) 代入橢圓方程,即可求得a和b的值,求得橢圓方程;(Ⅱ)設(shè)直線AE的方程為y=k(x﹣2),代入橢圓方程由韋達(dá)定理,求得E點(diǎn)坐標(biāo),由AE⊥AF,及中點(diǎn)坐標(biāo)公式求得P坐標(biāo)及直線AP的方程,當(dāng)k≠0時(shí),t= ,利用換元法及基本不等式的性質(zhì),即可求得直線AP斜率的最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)= x﹣lnx(x>0),則函數(shù)f(x)( )
A.在區(qū)間(0,1)內(nèi)有零點(diǎn),在區(qū)間(1,+∞)內(nèi)無(wú)零點(diǎn)
B.在區(qū)間(0,1)內(nèi)有零點(diǎn),在區(qū)間(1,+∞)內(nèi)有零點(diǎn)
C.在區(qū)間(0,3),(3,+∞)均無(wú)零點(diǎn)
D.在區(qū)間(0,3),(3,+∞)均有零點(diǎn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等差數(shù)列{an}中,a1=1,前n項(xiàng)和Sn滿足條件 =4,n=1,2,…
(1)求數(shù)列{an}的通項(xiàng)公式和Sn;
(2)記bn= ,求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知下面四個(gè)命題: (1.)從勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每15分鐘從中抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測(cè),這樣的抽樣是系統(tǒng)抽樣;
(2.)兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近于1;
(3.)對(duì)分類變量X和Y的隨機(jī)變量K2的觀測(cè)值k來(lái)說(shuō),k越小,“X與Y有關(guān)系”的把握程度越大;
(4.)在回歸直線方程 =0.4x+12中,當(dāng)解釋變量x每增加一個(gè)單位時(shí),預(yù)報(bào)變量大約增加0.4個(gè)單位.
其中真命題的個(gè)數(shù)是( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐 中, 底面 , , ,點(diǎn) 為棱 的中點(diǎn).
(1)證明: 面 ;
(2)證明 ;
(3)求三棱錐 的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線C的方程為: ﹣ =1
(1)求雙曲線C的離心率;
(2)求與雙曲線C有公共的漸近線,且經(jīng)過(guò)點(diǎn)A(﹣3,2 )的雙曲線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校在高二年級(jí)開(kāi)設(shè)選修課,其中數(shù)學(xué)選修課開(kāi)了三個(gè)班.選課結(jié)束后,有四名選修英語(yǔ)的同學(xué)要求改修數(shù)學(xué),但數(shù)學(xué)選修每班至多可再接收兩名同學(xué),那么安排好這四名同學(xué)的方案有( )
A.72種
B.54種
C.36種
D.18種
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,PA⊥PC,PB=AB=BC=2,∠ABC=120°, ,D為AC上一點(diǎn),且AD=3DC.
(1)求證:PD⊥平面ABC;
(2)若E為PA中點(diǎn),求直線CE與平面PAB所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊長(zhǎng)分別為a,b,c,R是△ABC的外接圓半徑,有下列四個(gè)條件: ⑴(a+b+c)(a+b﹣c)=3ab
⑵sinA=2cosBsinC
⑶b=acosC,c=acosB
⑷
有兩個(gè)結(jié)論:甲:△ABC是等邊三角形.乙:△ABC是等腰直角三角形.
請(qǐng)你選取給定的四個(gè)條件中的兩個(gè)為條件,兩個(gè)結(jié)論中的一個(gè)為結(jié)論,寫(xiě)出一個(gè)你認(rèn)為正確的命題 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com