對(duì)于直線xsinθ+y+1=0,其傾斜角的取值范圍是(    )

A.[-,]                           B.[0,]∪[,π]

C.[,]                           D.[0,]∪(,π]

思路解析:因?yàn)樵撝本的斜率為-sinθ,可以考慮由斜率的范圍來確定傾斜角的范圍.

解:∵xsinθ+y+1=0,∴y=-xsinθ-1,其斜率k=-sinθ∈[-1,1].又∵k=tanα,α∈[0,π,∴-1≤tanα≤1.∴α∈[0,]∪[,π].

答案:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于直線xsinα+y+1=0,其傾斜角的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=aln(1+ex)-(a+1)x.
(1)已知f(x)滿足下面兩個(gè)條件,求a的取值范圍.
①在(-∞,1]上存在極值,
②對(duì)于任意的θ∈R,c∈R直線l:xsinθ+2y+c=0都不是函數(shù)y=f(x)(x∈(-1,+∞))圖象的切線;
(2)若點(diǎn)A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3))從左到右依次是函數(shù)y=f(x)圖象上三點(diǎn),且2x2=x1+x3,當(dāng)a>0時(shí),△ABC能否是等腰三角形?若能,求△ABC面積的最大值;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:湖南省月考題 題型:解答題

已知函數(shù)f(x)=aln(1+ex)-(a+1)x。
(1)已知f(x)滿足下面兩個(gè)條件,求a的取值范圍。
①在(-∞,1]上存在極值,
②對(duì)于任意的θ∈R,c∈R直線l:xsinθ+2y+c=0都不是函數(shù)y=f(x)(x∈(-1,+∞))圖象的切線;
(2)若點(diǎn)A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3))從左到右依次是函數(shù)y=f(x)圖象上三點(diǎn),且2x2=x1+x3,當(dāng)a>0時(shí),△ABC能否是等腰三角形?若能,求△ABC面積的最大值;若不能,請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖南師大附中高三第一次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)f(x)=aln(1+ex)-(a+1)x.
(1)已知f(x)滿足下面兩個(gè)條件,求a的取值范圍.
①在(-∞,1]上存在極值,
②對(duì)于任意的θ∈R,c∈R直線l:xsinθ+2y+c=0都不是函數(shù)y=f(x)(x∈(-1,+∞))圖象的切線;
(2)若點(diǎn)A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3))從左到右依次是函數(shù)y=f(x)圖象上三點(diǎn),且2x2=x1+x3,當(dāng)a>0時(shí),△ABC能否是等腰三角形?若能,求△ABC面積的最大值;若不能,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案