精英家教網 > 高中數學 > 題目詳情

【題目】新冠肺炎疫情的控制需要根據大數據進行分析,并有針對性的采取措施.下圖是甲、乙兩個省份從27日到213日一周內的新增新冠肺炎確診人數的折線圖.根據圖中甲、乙兩省的數字特征進行比對,下列說法錯誤的是(

A.27日到213日甲省的平均新增新冠肺炎確診人數低于乙省

B.27日到213日甲省的單日新增新冠肺炎確診人數最大值小于乙省

C.27日到213日乙省相對甲省的新增新冠甲省肺炎確診人數的波動大

D.后四日(210日至13日)乙省每日新增新冠肺炎確診人數均比甲省多

【答案】C

【解析】

根據圖象計算平均數,讀數進行比較即可得到結果.

根據圖象所給數據可得27日到213日甲省的平均新增“新冠肺炎”確診人數為20, 單日新增最大值為28 27日到213日乙省的平均新增“新冠肺炎”確診人數約為22,單日新增最大值為29,故可得A、B正確;

從圖中可觀察出甲省人數在之間變化,乙省人數在之間變化,很明顯甲省的波動大,故C錯誤;

由圖可知,后四日乙人數均比甲人數多,故D正確.

故選:C

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐的底面是矩形,平面平面,,且,點中點.

1)證明:平面平面;

2)直線和平面所成的角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】【選修4-4:坐標系與參數方程】

在直角坐標系中,以原點為極點,軸的正半軸為極軸建立極坐標系,直線的參數方程為為參數),曲線的極坐標方程為.

(1)寫出直線的普通方程和曲線的直角坐標方程;

(2)若點的坐標為,直線與曲線交于兩點,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的右焦點為,右準線為.是橢圓上異于長軸端點的任意一點,連接并延長交橢圓于點,線段的中點為,為坐標原點,且直線與右準線交于點.

1)求橢圓的標準方程;

2)若,求點的坐標;

3)試確定直線與橢圓的公共點的個數,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標中,直線的參數方程為為參數,.在以坐標原點為極點、x軸的非負半軸為極軸的極坐標系中,曲線的極坐標方程為.

1)若點在直線上,求直線的極坐標方程;

2)已知,若點在直線上,點在曲線上,且的最小值為,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓,四點,,中恰有三點在橢圓上,拋物線焦點到準線的距離為.

1)求橢圓、拋物線的方程;

2)過橢圓右頂點Q的直線與拋物線交于點AB,射線、分別交橢圓于點、.

i)證明:為定值;

ii)求的面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】哈爾濱市第三中學校響應教育部門疫情期間“停課不停學”的號召,實施網絡授課,為檢驗學生上網課的效果,高三學年進行了一次網絡模擬考試.全學年共人,現從中抽取了人的數學成績,繪制成頻率分布直方圖(如下圖所示).已知這人中分數段的人數比分數段的人數多.

1)根據頻率分布直方圖,求、的值,并估計抽取的名同學數學成績的中位數;

2)若學年打算給數學成績不低于分的同學頒發(fā)“網絡課堂學習優(yōu)秀獎”,將這名同學數學成績的樣本頻率視為概率.

i)估計全學年的獲獎人數;

ii)若從全學年隨機選取人,求所選人中至少有人獲獎的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為改善環(huán)境,節(jié)約資源,我國自2019年起在全國地級及以上城市全面啟動生活垃圾分類,垃圾分類已成為一種潮流.某市一小區(qū)的主管部門為了解居民對垃圾分類的認知是否與其受教育程度有關,對該小區(qū)居民進行了隨機抽樣調查,得到如下統(tǒng)計數據的列聯表:

知道如何對垃圾進行分類

不知道如何對垃圾進行分類

合計

未受過高等教育

10

受過高等教育

合計

50

1)求列聯表中的,,,,的值,并估計該小區(qū)受過高等教育的居民知道如何對垃圾進行分類的概率;

2)根據列聯表判斷能否有的把握認為該小區(qū)居民對垃圾分類的認知與其受教育程度有關?

參考數據及公式:

,其中.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在銳角ABC中,a2_______,求ABC的周長l的范圍.

在①(﹣cos,sin),(cos,sin),且,②cosA(2bc)=acosC,③f(x)=cosxcos(x),f(A)

注:這三個條件中任選一個,補充在上面問題中并對其進行求解.

查看答案和解析>>

同步練習冊答案