A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{4}{5}$ | D. | $\frac{3}{5}$ |
分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用z的幾何意義即可得到結(jié)論.
解答 解:作出不等式組$\left\{\begin{array}{l}{x-y+5≥0}\\{x+2y-1≥0}\\{x≤3}\end{array}\right.$對(duì)應(yīng)的平面區(qū)域,
則z的幾何意義為區(qū)域內(nèi)點(diǎn)P到點(diǎn)D(-1,0)的距離平方的最小值,
由圖象可知,當(dāng)DP垂直于直線x+2y-1=0時(shí),
此時(shí)DP最小,|DP|=$\frac{|-1+0-1|}{\sqrt{{1}^{2}+{2}^{2}}}$=$\frac{2}{\sqrt{5}}$,
則z=|DP|2=$\frac{4}{5}$,
故選:C.
點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用以及點(diǎn)到直線的距離公式的應(yīng)用,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (3,+∞) | B. | $({\root{3}{3},+∞})$ | C. | $({\root{3}{3},3})$ | D. | $({0,\root{3}{3}})∪({3,+∞})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {2} | B. | {-3} | C. | {-3,2} | D. | {-2,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 銳角 | B. | 直角 | C. | 等腰 | D. | 等腰或直角 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=x2+2x,x∈(-1,+∞) | B. | f(x)=x2-1,x∈(-1,+∞) | ||
C. | f(x)=x2+2x,x∈(-∞,-1) | D. | f(x)=x2-1,x∈(-∞,-1) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com