18.已知函數(shù)f(x)=$\frac{1}{x}$,以下關(guān)于函數(shù)f(x)的判斷中正確的是(  )
A.f(x)是偶函數(shù),在(0,+∞)內(nèi)是增函數(shù)B.f(x)是偶函數(shù),在(0,+∞)內(nèi)是減函數(shù)
C.f(x)是奇函數(shù),在(0,+∞)內(nèi)是增函數(shù)D.f(x)是奇函數(shù),在(0,+∞)內(nèi)是減函數(shù)

分析 根據(jù)反比例函數(shù)的性質(zhì)進(jìn)行判斷即可.

解答 解:函數(shù)的定義域為(-∞,0)∪(0,+∞),
f(-x)=-$\frac{1}{x}$=-f(x),則函數(shù)f(x)是奇函數(shù),
則(0,+∞)上為減函數(shù),
故選:D

點評 本題主要考查函數(shù)奇偶性和單調(diào)性的判斷,結(jié)合反比例函數(shù)的性質(zhì)是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$,過點F(c,0)作直線交雙曲線C的兩條漸近線于A,B兩點,若B為FA的中點,且OA=c,則雙曲線的離心率為( 。
A.$\sqrt{3}$B.2C.$2\sqrt{3}$D.$4\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.等比數(shù)列{an}的前n項和Sn=$\frac{1}{2}•{3^{n+1}}$+c(c為常數(shù)),若λan≤3+S2n恒成立,則實數(shù)λ的最大值是( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知雙曲線C的中心在原點,焦點在y軸上,若雙曲線C的一條漸近線與直線$\sqrt{2}$x-y-1=0平行,則雙曲線C的離心率為( 。
A.$\frac{\sqrt{6}}{2}$B.$\sqrt{2}$C.$\sqrt{3}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.“=”在基本算法語句中叫( 。
A.賦值號B.等號C.輸入語句D.輸出語句

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.以點(2,-1)為圓心且與直線3x-4y+5=0相切的圓的方程為( 。
A.(x-2)2+(y+1)2=3B.(x+2)2+(y-1)2=3C.(x-2)2+(y+1)2=9D.(x+2)2+(y-1)2=9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知集合A={x|-1<x≤1},B={x|0<x≤2},則A∪B={x|-1<x≤2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=Asin(ωx+$\frac{π}{6}$)-1(A>0,ω>0)的部分圖象如圖,則對于區(qū)間[0,π]內(nèi)的任意實數(shù)x1,x2,f(x1)-f(x2)的最大值為( 。
A.2B.3C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.過點P(2,0)的直線交拋物線y2=4x于A,B兩點,若拋物線的焦點為F,則△ABF面積的最小值為2$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊答案