1.已知△ABC是邊長為1的等邊三角形,點(diǎn)D,E分別是邊AB,BC的中點(diǎn),連接DE并延長到點(diǎn)F,使$\overrightarrow{DE}$=2$\overrightarrow{EF}$,則$\overrightarrow{AF}$•$\overrightarrow{BC}$的值為( 。
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{11}{8}$D.$-\frac{5}{8}$

分析 可畫出圖形,并連接AE,從而有AE⊥BC,這便得出$\overrightarrow{AE}•\overrightarrow{BC}=0$,并由條件得出$\overrightarrow{EF}=\frac{1}{2}\overrightarrow{DE}$,而$\overrightarrow{AF}=\overrightarrow{AE}+\overrightarrow{EF}$,代入$\overrightarrow{AF}•\overrightarrow{BC}$,進(jìn)行數(shù)量積的運(yùn)算即可求出該數(shù)量積的值.

解答 解:如圖,連接AE,則:AE⊥BC;
$\overrightarrow{DE}=2\overrightarrow{EF}$;
∴$\overrightarrow{EF}=\frac{1}{2}\overrightarrow{DE}$;
∴$\overrightarrow{AF}•\overrightarrow{BC}=(\overrightarrow{AE}+\overrightarrow{EF})•\overrightarrow{BC}$
=$\overrightarrow{AE}•\overrightarrow{BC}+\frac{1}{2}\overrightarrow{DE}•\overrightarrow{BC}$
=$0+\frac{1}{2}|\overrightarrow{DE}||\overrightarrow{BC}|cos\frac{π}{3}$
=$\frac{1}{2}×\frac{1}{2}×1×\frac{1}{2}$
=$\frac{1}{8}$.
故選A.

點(diǎn)評 本題考查向量垂直的充要條件,向量加法的幾何意義,向量的數(shù)乘運(yùn)算,以及向量數(shù)量積的運(yùn)算及計算公式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若函數(shù)f(x)=$\frac{1}{3}$x3+ax2+bx+c有極值點(diǎn)x1,x2(x1>x2),f(x1)=x1,則關(guān)于x的方程[f(x)]2+2af(x)+b=0的不同實數(shù)根的個數(shù)是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.某家庭進(jìn)行理財投資,根據(jù)長期收益率市場預(yù)測,投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,投資股票等風(fēng)險型產(chǎn)品的收益與投資額的算術(shù)平方根成正比.已知投資1萬元時兩類產(chǎn)品的收益分別為0.125萬元和0.5萬元(如圖).

(1)分別寫出兩種產(chǎn)品的收益與投資額的函數(shù)關(guān)系式;
(2)該家庭現(xiàn)有20萬元資金,全部用于理財投資,問:怎么分配資金能使投資獲得最大收益,其最大收益是多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知f(x)是一次函數(shù),且3f(1)-2f(2)=-5,2f(0)-f(-1)=1,則f(x)的解析式為( 。
A.f(x)=3x-2B.f(x)=3x+2C.f(x)=2x+3D.f(x)=2x-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖所示的函數(shù)F(x)的圖象,由指數(shù)函數(shù)f(x)=ax與冪函數(shù)g(x)=xb“拼接”而成.
(1)求F(x)的解析式;
(2)比較ab與ba的大;
(3)已知(m+4)-b<(3-2m)-b,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在平面直角坐標(biāo)系xOy中,點(diǎn)A(2,0),點(diǎn)B在單位圓上,∠AOB=θ(0<θ<π).
(I)若點(diǎn)B(-$\frac{3}{5}$,$\frac{4}{5}}$),求tan($\frac{π}{4}$-θ)的值;
(II)若$\overrightarrow{OA}$+$\overrightarrow{OB}$=$\overrightarrow{OC}$,$\overrightarrow{OB}$•$\overrightarrow{OC}$=$\frac{23}{13}$,求cos(${\frac{π}{3}$+θ)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.命題“?x0∈(0,+∞),使lnx0=x0-2”的否定是( 。
A.?x∈(0,+∞),lnx≠x-2B.?x∉(0,+∞),lnx=x-2
C.?x0∈(0,+∞),使lnx0≠x0-2D.?x0∉(0,+∞),lnx0=x0-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=2x3-3(a+1)x2+6ax,且a>$\frac{1}{2}$.
(I)若函數(shù)f(x)在x=3處取得極值,求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(II)若函數(shù)y=f(x)在[0,2a]上的最小值是-a2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知等差數(shù)列{an}中,Sn為其前n項和,a2+a8=14,S5=25.
(1)求{an}的通項公式;
(2)設(shè)bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,求數(shù)列{bn}前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案