某分公司經銷某種品牌產品,每件產品的成本為3元,并且每件產品需向總公司交a元(3≤a≤5)的管理費,預計當每件產品的售價為x元(9≤x≤11)時,一年的銷售量為(12-x)2萬件.
(1)求分公司一年的利潤L(萬元)與每件產品的售價x的函數(shù)關系式;
(2)當每件產品的售價為多少元時,分公司一年的利潤L最大?并求出L的最大值Q(a).

(1)L=(x-3-a)·(12-x)2,x∈[9,11].(2)當每件售價為元時,分公司一年的利潤L最大,最大值Q(a)=4 3(萬元).

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知實數(shù)x、y、z滿足3x=4y=6z>1.
(1)求證:;
(2)試比較3x、4y、6z的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

為了保護環(huán)境,發(fā)展低碳經濟,某單位在國家科研部門的支持下,進行技術攻關,新上了把二氧化碳處理轉化為一種可利用的化工產品的項目,經測算,該項目月處理成本y(元)與月處理量x(噸)之間的函數(shù)關系可近似地表示為
y=
且每處理一噸二氧化碳得到可利用的化工產品價值為200元,若該項目不獲利,國家將給予補償.
(1)當x∈[200,300]時,判斷該項目能否獲利?如果獲利,求出最大利潤;如果不獲利,則國家每月至少需要補貼多少元才能使該項目不虧損?
(2)該項目每月處理量為多少噸時,才能使每噸的平均處理成本最低?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=4x+m·2x+1有且僅有一個零點,求m的取值范圍,并求出該零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某服裝廠生產一種服裝,每件服裝的成本為40元,出廠單價定為60元,該廠為鼓勵銷售商訂購,決定當一次訂購量超過100件時,每多訂購一件,訂購的全部服裝的出場單價就降低0.02元,根據(jù)市場調查,銷售商一次訂購量不會超過600件.
(1)設一次訂購x件,服裝的實際出廠單價為p元,寫出函數(shù)p=f(x)的表達式;
(2)當銷售商一次訂購多少件服裝時,該廠獲得的利潤最大?其最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,P1(x1,y1),P2(x2y2),…,Pn(xn,yn)(0<y1y2<…<yn)是曲線Cy2=3x(y≥0)上的n個點,點Ai(ai,0)(i=1,2,3,…,n)在x軸的正半軸上,且△Ai-1AiPi是正三角形(A0是坐標原點).
 
(1)寫出a1,a2a3;
(2)求出點An(an,0)(n∈N*)的橫坐標an關于n的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知二次函數(shù)f(x)=ax2bx+1(a>0),F(x)=f(-1)=0,且對任意實數(shù)x均有f(x)≥0成立.
(1)求F(x)的表達式;
(2)當x∈[-2,2]時,g(x)=f(x)-kx是單調函數(shù),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某單位擬建一個扇環(huán)面形狀的花壇(如圖所示),該扇環(huán)面是由以點為圓心的兩個同心圓弧和延長后通過點的兩條直線段圍成.按設計要求扇環(huán)面的周長為30米,其中大圓弧所在圓的半徑為10米.設小圓弧所在圓的半徑為米,圓心角為(弧度).

(1)求關于的函數(shù)關系式;
(2)已知在花壇的邊緣(實線部分)進行裝飾時,直線部分的裝飾費用為4元/米,弧線部分的裝飾費用為9元/米.設花壇的面積與裝飾總費用的比為,求關于的函數(shù)關系式,并求出為何值時,取得最大值?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)是奇函數(shù).
(1)求m的值:
(2)設.若函數(shù)的圖象至少有一個公共點.求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案