已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)函數(shù)自變量的取值區(qū)間與對(duì)應(yīng)函數(shù)值的取值區(qū)間相同時(shí),這樣的區(qū)間稱(chēng)為函數(shù)的保值區(qū)間。設(shè),試問(wèn)函數(shù)在上是否存在保值區(qū)間?若存在,請(qǐng)求出一個(gè)保值區(qū)間;若不存在,請(qǐng)說(shuō)明理由.
(1)當(dāng)時(shí),的單調(diào)增區(qū)間為;當(dāng)時(shí),的單調(diào)增區(qū)間為,減區(qū)間為;(2)不存在保值區(qū)間.
【解析】
試題分析:本題主要考查函數(shù)與導(dǎo)數(shù)以及運(yùn)用導(dǎo)數(shù)求單調(diào)區(qū)間、極值等數(shù)學(xué)知識(shí)和方法,考查思維能力、運(yùn)算能力、分析問(wèn)題解決問(wèn)題的能力,考查轉(zhuǎn)化思想和分類(lèi)討論思想.第一問(wèn),先對(duì)求導(dǎo),令,可以看出的單調(diào)區(qū)間是由0和1斷開(kāi)的,現(xiàn)在所求的范圍是,所以將從0斷開(kāi),分和兩部分進(jìn)行討論,分別判斷的正負(fù)來(lái)決定的單調(diào)性;第二問(wèn),用反證法證明,先假設(shè)存在保值區(qū)間,先求出,再求導(dǎo),因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014032910464832639800/SYS201403291047482795948512_DA.files/image014.png">,所以可以求出最值,即方程有兩個(gè)大于1的相異實(shí)根,下面證明函數(shù)有2個(gè)零點(diǎn),通過(guò)2次求導(dǎo),判斷單調(diào)性和極值確定只有一個(gè)零點(diǎn),所以與有2個(gè)大于1的實(shí)根矛盾,所以假設(shè)不成立,所以不存在保值區(qū)間.
試題解析:(1)當(dāng)時(shí),,此時(shí)的單調(diào)增區(qū)間為;
當(dāng)時(shí),,此時(shí)的單調(diào)增區(qū)間為,減區(qū)間為 4分
(2)函數(shù)在上不存在保值區(qū)間。 5分
證明如下:
假設(shè)函數(shù)存在保值區(qū)間[a,b]. ,
因時(shí),所以為增函數(shù), 所以
即方程有兩個(gè)大于1的相異實(shí)根。 7分
設(shè),
因,,所以在上單增,又,
即存在唯一的使得 9分
當(dāng)時(shí),為減函數(shù),當(dāng)時(shí),為增函數(shù),
所以函數(shù)在處取得極小值。又因,
所以在區(qū)間上只有一個(gè)零點(diǎn), 11分
這與方程有兩個(gè)大于1的相異實(shí)根矛盾。
所以假設(shè)不成立,即函數(shù)在上不存在保值區(qū)間。 12分
考點(diǎn):1.利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間;2.反證法;3.利用導(dǎo)數(shù)求函數(shù)的極值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿(mǎn)分12分)
已知函數(shù)。
(1):當(dāng)時(shí),求函數(shù)的極小值;
(2):試討論函數(shù)零點(diǎn)的個(gè)數(shù)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年福建省福州市高三畢業(yè)班質(zhì)檢理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)遞增區(qū)間;
(2)設(shè)的內(nèi)角的對(duì)應(yīng)邊分別為,且若向量與向量共線(xiàn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆廣東省東莞市第三次月考高一數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的最大值和最小值;
(2)求實(shí)數(shù)的取值范圍,使在區(qū)間上是單調(diào)減函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省高三下學(xué)期假期檢測(cè)文科數(shù)學(xué)試卷 題型:解答題
已知函數(shù).().
(1)當(dāng)時(shí),求函數(shù)的極值;
(2)若對(duì),有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年吉林省高三上學(xué)期第二次教學(xué)質(zhì)量檢測(cè)文科數(shù)學(xué)卷 題型:解答題
已知函數(shù)
(1)當(dāng)時(shí),求的極小值;
(2)設(shè),求的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com