分析:由數(shù)列的通項(xiàng)公式得到數(shù)列的首項(xiàng)和公差,再由通項(xiàng)大于等于0解出數(shù)列的前5項(xiàng)為正數(shù),從第6項(xiàng)起為負(fù)數(shù),則Sn=|a1|+|a2|+…+|an|可求.
解答:解:由a
n=11-2n≥0,得
n≤,
∴數(shù)列{a
n}的前5項(xiàng)為正數(shù),從第6項(xiàng)起為負(fù)數(shù),
又由a
n=11-2n,得a
1=9,a
n+1-a
n=11-2(n+1)-11+2n=-2,
∴數(shù)列{a
n}是首項(xiàng)為9,公差為-2的等差數(shù)列.
則S
n=|a
1|+|a
2|+…+|a
n|=(a
1+a
2+…+a
5)-(a
6+a
7+…+a
10)
=-(a
1+a
2+…+a
10)+2(a
1+a
2+…+a
5)
=-S
10+2S
5=
-(10a1+)+2(5a1+)=-(10×9-90)+2(5×9-20)=50.
故答案為:50.
點(diǎn)評:本題考查了數(shù)列的函數(shù)特性,考查了等差數(shù)列的通項(xiàng)公式及前n項(xiàng)和,是基礎(chǔ)的計(jì)算題.