17.若(3x-1)5=a0+a1x+a2x2+…+a5x5,則a1+2a2x+3a3x+4a4+5a5=(  )
A.80B.120C.180D.240

分析 對已知等式求導數(shù),對求導后的等式中的x賦值1,求出a1+2a2+3a3+4a4+5a5的值.

解答 解:∵(3x-1)5=a0+a1x+a2x2+…+a5x5
兩邊求導可得:15(3x-1)4=a1+2a2x+…+5a5x4,
令x=1,可得a1+2a2x+3a3x+4a4+5a5=15(3-1)4=240,
故選:D.

點評 本題考查復合函數(shù)的求導法則、考查賦值法求展開式的系數(shù)和常用的方法.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

7.已知向量$\overrightarrow{a}$=(sin(π+ωx),2cosωx),$\overrightarrow$=(2$\sqrt{3}$sin($\frac{π}{2}$+ωx),cosωx),(ω>0),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$,其圖象上相鄰的兩個最低點之間的距離為π.
(Ⅰ)求函數(shù)f(x)的對稱中心;
(Ⅱ)在銳角△ABC中,角A、B、C的對邊分別為a、b、c,tanB=$\frac{\sqrt{3}ac}{{a}^{2}+{c}^{2}-^{2}}$,求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如圖所示,四面體ABCD中,已知平面BCD⊥平面ABC,BD⊥DC,BC=6,AB=4$\sqrt{3}$,∠ABC=30°.
(I)求證:AC⊥BD;
(II)若二面角B-AC-D為45°,求直線AB與平面ACD所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知向量$\overrightarrow{a}$=(3,-1),$\overrightarrow$=(2,1),則$\overrightarrow{a}$在$\overrightarrow$方向上的投影為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.若變量x,y滿足約束條件$\left\{\begin{array}{l}x-y+1≥0\\ 2x-y-1≤0\\ x+y+1≥0\end{array}\right.$,則目標函數(shù)z=2x+y的最小值為( 。
A.4B.-1C.-2D.-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.設{an}是公比負數(shù)的等比數(shù)列,a1=2,a3-4=a2,則a3=(  )
A.2B.-2C.8D.-8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.己知對所有實數(shù)x,不等式x2log2$\frac{2(a-1)}{a}$+2xlog2$\frac{2a}{a-1}$+log2$\frac{(a-1)^{2}}{4{a}^{2}}$<0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知在一次全國數(shù)學競賽中,某市3000名參賽學生的初賽成績統(tǒng)計如圖所示.則在本次數(shù)學競賽中,成績在[80,90]上的學生人數(shù)為900.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.若x,y滿足約束條件$\left\{{\begin{array}{l}{x+y-2≤0}\\{x-2y+1≤0}\\{2x-y+2≥0}\end{array}}\right.$,則Z=x2+y2的最小值為2.

查看答案和解析>>

同步練習冊答案