【題目】設(shè)表示三條不同的直線,表示三個不同的平面,給出下列四個命題:

①若,則;

②若,則;

③若為異面直線,,,則

④若,則. 其中真命題的個數(shù)為( )

A. 1 B. 2 C. 3 D. 4

【答案】B

【解析】對于①,,由空間線面的性質(zhì)定理可知,正確;對于②,,因為有可能在平面內(nèi),故錯誤;對于③,為異面直線,,根據(jù)面面平行的判定定理可得,故正確;對于④,,則可能,故錯誤,真命題的個數(shù)為 ,故選B.

【方法點晴】本題主要考查線面平行的判定與性質(zhì)、面面垂直的性質(zhì)及線面垂直的判定,屬于難題.空間直線、平面平行或垂直等位置關(guān)系命題的真假判斷,常采用畫圖(尤其是畫長方體)、現(xiàn)實實物判斷法(如墻角、桌面等)、排除篩選法等;另外,若原命題不太容易判斷真假,可以考慮它的逆否命題,判斷它的逆否命題真假,原命題與逆否命題等價.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC中,BC邊上的高所在直線的方程為x2y10,A的平分線所在的直線方程為y0.若點B的坐標(biāo)為(1,2),求點A和點C的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直三棱柱中, ,ACB=90°,M是 的中點,N是的中點.

Ⅰ)求證:MN∥平面;

求點到平面BMC的距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】二戰(zhàn)中盟軍為了知道德國“虎式”重型坦克的數(shù)量,采用了兩種方法,一種是傳統(tǒng)的情報竊取,一種是用統(tǒng)計學(xué)的方法進(jìn)行估計,統(tǒng)計學(xué)的方法最后被證實比傳統(tǒng)的情報收集更精確,德國人在生產(chǎn)坦克時把坦克從1開始進(jìn)行了連續(xù)編號,在戰(zhàn)爭期間盟軍把繳獲的“虎式”坦克的編號進(jìn)行記錄,并計算出這些編號的平均值為675.5,假設(shè)繳獲的坦克代表了所有坦克的一個隨機樣本,則利用你所學(xué)過的統(tǒng)計知識估計德國共制造“虎式”坦克大約有(
A.1050輛
B.1350輛
C.1650輛
D.1950輛

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于f(x)=4sin (xR),有下列命題

①由f(x1)=f(x2)=0可得x1x2π的整數(shù)倍

yf(x)的表達(dá)式可改寫成y=4cos;

yf(x)圖象關(guān)于對稱;

yf(x)圖象關(guān)于x=-對稱.

其中正確命題的序號為________(將你認(rèn)為正確的都填上)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓M的圓心在直線上,且經(jīng)過點A-30),B12).

(1)求圓M的方程;

2)直線與圓M相切,且y軸上的截距是x軸上截距的兩倍,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的一個頂點為拋物線的頂點, , 兩點都在拋物線上,且.

(1)求證:直線必過一定點;

(2)求證: 面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某某大學(xué)藝術(shù)專業(yè)400名學(xué)生參加某次測評,根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組: ,并整理得到如下頻率分布直方圖:

(Ⅰ)從總體的400名學(xué)生中隨機抽取一人,估計其分?jǐn)?shù)小于70的概率;

(Ⅱ)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計總體中分?jǐn)?shù)在區(qū)間[40,50)內(nèi)的人數(shù);

(Ⅲ)已知樣本中有一半男生的分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等.試估計總體中男生和女生人數(shù)的比例.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,平面五邊形ABCDE中,AB∥CD,∠BAD=90°,AB=2,CD=1,△ADE是邊長為2的正三角形.現(xiàn)將△ADE沿AD折起,得到四棱錐E﹣ABCD(如圖2),且DE⊥AB.
(Ⅰ)求證:平面ADE⊥平面ABCD;
(Ⅱ)求平面BCE和平面ADE所成銳二面角的大;
(Ⅲ)在棱AE上是否存在點F,使得DF∥平面BCE?若存在,求 的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案