分析 根據(jù)方程根的個(gè)數(shù)與判別式之間的關(guān)系證明△>0恒成立,由題意判斷出另一個(gè)根的范圍,再由f(1)>0求出a的范圍,利用f(0)<0進(jìn)一步確定兩個(gè)根的關(guān)系,再由韋達(dá)定理求出a范圍,再取交集.
解答 解:∵|x2|<x1(1-x2),∴x1(1-x2)>0,
又∵0<x1<1,∴x2<1
設(shè)f(x)=(a2+1)x2-2ax-3,∵方程有兩根,∴△=4a2+12(a2+1)>0恒成立,
則f(1)=a2-2a-2>0,解得a>1+$\sqrt{3}$或a<1-$\sqrt{3}$;
∵f(0)=-3,
∴x2<0<x1<1,
則|x2|<x1(1-x2)可化簡(jiǎn)為:x1+x2>x1x2,
利用韋達(dá)定理得$\frac{2a}{{a}^{2}+1}$>-$\frac{3}{{a}^{2}+1}$,
解得a>-$\frac{3}{2}$.
∴實(shí)數(shù)a的取值范圍是:(-$\frac{3}{2}$,1-$\sqrt{3}$)∪(1+$\sqrt{3}$,+∞)
故答案為:$a∈(-\frac{3}{2},1-\sqrt{3})∪(1+\sqrt{3},+∞)$
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是二次函數(shù)的圖象和性質(zhì),熟練掌握二次函數(shù)的圖象和性質(zhì),是解答的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | c>a>b | B. | b>a>c | C. | a>c>b | D. | b>c>a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{e}$ | B. | $\frac{1}{e-1}$ | C. | $1-\frac{1}{e}$ | D. | $\frac{e-2}{e-1}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {2,4,6} | B. | {4,6} | C. | {1,3,5} | D. | {1,2,3,4,5,6} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -4 | B. | -1 | C. | 0 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分又不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com