如圖所示,某地一天從6~14時的溫度變化曲線近似滿足函數(shù):f(x)=Asin(ωx+φ)+b,x∈[6,14],則這段曲線的解析式為( )
A.
B.
C.
D.
【答案】分析:由圖可以看出,最高點與最低點的坐標(biāo)是(6,6)與(14,18),可求得A,b,又可得半個周期是8,求得周期是16,由此求ω,再將最高點的坐標(biāo)(14,18)代入求得φ,即可求得函數(shù)解析式.
解答:解:由圖象;

由此得將(14,18)代入

故ϕ可取
即得函數(shù)解析式為
故選B.
點評:本題考點由y=Asin(ωx+φ)的部分圖象確定其解析式,考查通過圖象的特征求三角函數(shù)解析式的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,某地一天從6時到14時的溫度變化曲線近似滿足函數(shù)y=Asin(ωx+φ)+b,則8時的溫度大約為
 
°C(精確到1°C)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,某地一天從6~14時的溫度變化曲線近似滿足函數(shù):f(x)=Asin(ωx+φ)+b,x∈[6,14],則這段曲線的解析式為(  )
A、f(x)=12sin(
π
8
x+
4
)+12
B、f(x)=6sin(
π
8
x+
4
)+12
C、f(x)=6sin(
1
8
x+
4
)+12
D、f(x)=12sin(
1
8
x+
4
)+12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,某地一天從6時至14時的溫度變化曲線近似滿足y=Asin(ωx+φ)+b.
(1)求這段時間的最大溫差;
(2)寫出這段曲線的函數(shù)解析式;
(3)如果一天24小時內(nèi)的溫度均近似符合該函數(shù)關(guān)系式,求一天中溫度不小于25℃的時間有多長?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:專項題 題型:解答題

如圖所示,某地一天從6時至14時的溫度變化曲線近似滿足函數(shù)y=Asin(ωx+φ)+b。
(1)求這段時間的最大溫差;
(2)寫出這段曲線的函數(shù)解析式;
(3)如果一天24小時內(nèi)的溫度均近似符合該函數(shù)關(guān)系式,求一天中溫度不小于25℃的時間有多長?

查看答案和解析>>

同步練習(xí)冊答案