分析 (1)根據(jù)函數(shù)與其反函數(shù)的圖象關(guān)于y=x直線對(duì)稱;
(2)設(shè)h(x)=x,利用導(dǎo)數(shù)求得f(x)-h(x)=ex-x的最小值大于0,從而得ex>x,利用導(dǎo)數(shù)求得h(x)-g(x)=x-lnx的最小值大于0,從而得x>lnx,這樣可證明f(x)的圖象恒在g(x)的圖象的上方;
(3)根據(jù)導(dǎo)數(shù)的幾何意義得直線的斜率為${e}^{{x}_{1}}$=$\frac{1}{{x}_{2}}$=$\frac{ln{x}_{2}-{e}^{{x}_{1}}}{{x}_{2}-{x}_{1}}$,利用${e}^{{x}_{1}}$>0得:0<x2<1⇒lnx2<0⇒x1>x2+1,可證x1>1.
解答 解:(1)f(x)與g(x)的圖象關(guān)于直線y=x對(duì)稱,
(2)證明:g(x)=lnx,設(shè)h(x)=x,
令y=f(x)-h(x)=ex-x,
y′=ex-1,
令y′=0,即ex=1,解得x=0,
當(dāng)x<0時(shí),y′<0,
當(dāng)x>0時(shí),y′>0,
∴當(dāng)x=0時(shí),ymin=ex-0=1>0,
∴ex>x,
令y=h(x)-g(x)=x-lnx,
y′=1-$\frac{1}{x}$=$\frac{x-1}{x}$(x>0),
令y′=0,解得:x=1;
當(dāng)0<x<1時(shí),y′<0,
當(dāng)x>1,時(shí)y′>0,
∴當(dāng)x=1時(shí),ymin=1-ln1=1>0,
∴x>lnx(x>0)
∴f(x)的圖象恒在g(x)的圖象的上方;
(3)f′(x)=ex,g′(x)=$\frac{1}{x}$,切點(diǎn)的坐標(biāo)分別為(x1,${e}^{{x}_{1}}$)(x2,lnx2),
可得方程組:$\left\{\begin{array}{l}{{e}^{{x}_{1}}=\frac{1}{{x}_{2}}}\\{\frac{ln{x}_{2}-{e}^{{x}_{1}}}{{x}_{2}-{x}_{1}}={e}^{{x}_{1}}}\end{array}\right.$,
∵x1>x2>0,
∴${e}^{{x}_{1}}$>1
∴$\frac{1}{{x}_{2}}$>1,
∴0<x2<1,
∴l(xiāng)nx2<0,
又lnx2-${e}^{{x}_{1}}$=${e}^{{x}_{1}}$(x2-x1),
∴l(xiāng)nx2=${e}^{{x}_{1}}$(x2-x1+1)<0,
∴x2-x1+1<0,
x1>x2+1,
∴x1>1.
點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值、構(gòu)造函數(shù)證明不等式、導(dǎo)數(shù)的幾何意義、斜率計(jì)算公式、指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的單調(diào)性等基礎(chǔ)知識(shí)與基本技能方法,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,+∞) | B. | [0,1) | C. | (0,1) | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分必要條件 | B. | 充分不必要條件 | ||
C. | 必要不充分條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com