(本小題滿分12分)已知函數(shù)
(Ⅰ)若函數(shù)上是減函數(shù),求實(shí)數(shù)的取值范圍;
(Ⅱ)令,是否存在實(shí)數(shù),使得當(dāng)時(shí),函數(shù)的最小值是?若存在,求出實(shí)數(shù)的值;若不存在,說明理由.
(Ⅲ)當(dāng)時(shí),證明.
(1)(2)(3)略
(I)             …………………………………1分
上單調(diào)遞減,因此當(dāng)時(shí),恒成立
,化簡(jiǎn)得
,即, ………………………………4分
(II)         …………………………………5分
當(dāng)時(shí)
,,單調(diào)遞減;,單調(diào)遞增;
         
當(dāng)時(shí),單調(diào)遞減,,(舍)
綜上                                    ………………………………8分
(III)由(II)可知
,,       …………………………………9分
當(dāng)時(shí),,單調(diào)遞增,
恒成立               …………………………………12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分13分)已知函數(shù)
(1)當(dāng)的單調(diào)區(qū)間;
(2)若任意給定的,使得
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè),在處取得極大值,且存在斜率為的切線。
(1)求的取值范圍;
(2)若函數(shù)在區(qū)間上單調(diào)遞增,求的取值范圍;
(3)是否存在的取值使得對(duì)于任意,都有。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)已知是函數(shù)的一個(gè)極值點(diǎn)。
(Ⅰ)求;
(Ⅱ)若直線與函數(shù)的圖象有3個(gè)交點(diǎn),求的取值范圍;
(Ⅲ)設(shè)=(++(6-+2(),,若
=0有兩個(gè)零點(diǎn),且,試探究值的符號(hào)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù),則
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知,函數(shù)(其中為自然對(duì)數(shù)的底數(shù)).
(1)求函數(shù)在區(qū)間上的最小值;
(2)是否存在實(shí)數(shù),使曲線在點(diǎn)處的切線與軸垂直? 若存在,求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若函數(shù))的零點(diǎn)都在區(qū)間[-10,10]上,則使得方程有正整數(shù)解的實(shí)數(shù)的取值個(gè)數(shù)為                          (   )
A.1;B.2;C.3;D.4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù)是R上可導(dǎo)的偶函數(shù),,則的值為(  ).
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的導(dǎo)數(shù)是(     )
   B    C    D

查看答案和解析>>

同步練習(xí)冊(cè)答案