精英家教網 > 高中數學 > 題目詳情
20.如圖,平面ABEF⊥平面ABC,四邊形ABEF為矩形,AC=BC,O為AB的中點,OF⊥EC.
(Ⅰ)求證:OE⊥FC;
(Ⅱ)若AC=$\sqrt{3}$.AB=2時,求三棱錐O-CEF的體積.

分析 (Ⅰ)連結OC,則OC⊥AB,從而OC⊥平面ABEF,進而OF⊥OE,由此能證明OE⊥FC;
(Ⅱ)直接利用三棱錐的體積公式可得結論.

解答 (Ⅰ)證明:連結OC,∵AC=BC,O為AB的中點,
∴OC⊥AB,又平面ABEF⊥平面ABC,
故OC⊥平面ABEF,
∴OC⊥OF,又OF⊥EC,
∴OF⊥平面OEC,∴OF⊥OE,
又OC⊥OE,∴OE⊥平面OFC,
∴OE⊥FC.
(Ⅱ)解:由(Ⅰ)可知OE=OF=$\sqrt{2}$,OC=$\sqrt{3-1}$=$\sqrt{2}$,
∴三棱錐O-CEF的體積V=$\frac{1}{3}×\frac{1}{2}×\sqrt{2}×\sqrt{2}×\sqrt{2}$=$\frac{\sqrt{2}}{3}$.

點評 本題考查異面直線垂直的證明,考查三棱錐的體積的求法,考查學生的計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

10.已知角θ的終邊過點P(-12,5),則cosθ=( 。
A.$\frac{5}{13}$B.$-\frac{12}{13}$C.$\frac{12}{13}$D.$-\frac{5}{13}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

11.已知函數f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|<π)的部分圖象如圖所示.
(Ⅰ)求f(x)的解析式;
(Ⅱ)求f(x)的單調區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

8.某校為了了解高三學生體育達標情況,在高三學生體育達標成績中隨機抽取50個進行調研,按成績分組:第l組[75,80),第2組[80,85),第3組[85,90),第4組[90,95),第5組[95,100],得到的頻率分布直方圖如圖所示:若要在成績較高的第3,4,5組中用分層抽樣抽取6名學生進行復查:
(1)已知學生甲的成績在第5組,求學生甲被抽中復查的概率;
(2)在已抽取到的6名學生中隨機抽取2名學生接受籃球項目的考核,求其中一人在第3組,另一人在第4組的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

15.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線與圓(x+1)2+(y-$\sqrt{3}$)2=1相切,則此雙曲線的離心率為( 。
A.$\frac{2\sqrt{3}}{3}$B.2C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

5.曲線y=1+$\sqrt{4-{x}^{2}}$與直線kx-y-2k+4=0有兩個交點時,實數k取值范圍是( 。
A.($\frac{5}{12}$,$\frac{3}{4}$]B.($\frac{5}{12}$,$\frac{3}{4}$)C.($\frac{1}{3}$,$\frac{3}{4}$]D.(0,$\frac{5}{12}$)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

12.設a,b是非零實數,若a>b,則一定有(  )
A.$a+\frac{1}>b+\frac{1}{a}$B.$\frac{1}{{a{b^2}}}>\frac{1}{{{a^2}b}}$C.$\frac{1}{a}<\frac{1}$D.ab>b2

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

9.設$f(x)=\left\{{\begin{array}{l}{2{e^{x-1}},x<2}\\{{{log}_3}•({2^x}-1),x≥2}\end{array}}\right.$,則f[f(2)]等于( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

10.等比數列{an}中,a3+a5=10,a4+a6=20
(1)求{an}的通項公式;
(2)設${b_n}={(-1)^n}{log_2}{a_n}$,求數列{bn}的前29 項和S29

查看答案和解析>>

同步練習冊答案