(12分)
如圖,邊長(zhǎng)為2的正方形ACDE所在的平面與平面ABC垂直,AD與CE的交點(diǎn)為M,,且AC=BC.
(1)求證:平面EBC;w.w.zxxk.c.o
(2求二面角的大小.
略
解析解: ∵四邊形是正方形 ,w.w.w.zxxk.c.o.m
,
∵平面平面,
平面,
∴可以以點(diǎn)為原點(diǎn),以過(guò)點(diǎn)平行于的直線為軸,
分別以直線和為軸和軸,建立如圖所示的空間直角坐標(biāo)系.
設(shè),則
,
是正方形的對(duì)角線的交點(diǎn),
.
(1) ,,,
,
w.w.w.zxxk.c.o.m
平面.
(2) 設(shè)平面的法向量為,則且,
且.
即 w.w.w.zxxk.c.o.m
取,則, 則.
又∵為平面的一個(gè)法向量,且,
,
設(shè)二面角的平面角為,則,
∴二面角等于.
(1) ,(2)均可用幾何法
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在邊長(zhǎng)是2的正方體-中,分別為
的中點(diǎn). 應(yīng)用空間向量方法求解下列問(wèn)題.
(1)求EF的長(zhǎng)
(2)證明:平面;
(3)證明: 平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖:在空間四邊形ABCD中,AB,BC,BD兩兩垂直,且AB=BC=2,E是AC的中點(diǎn),異面直線AD和BE所成的角為,求BD的長(zhǎng)度.(15分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分10分)
已知三棱錐P-ABC中,PA⊥平面ABC,AB⊥AC,,N為AB上一點(diǎn),AB="4AN," M、S分別為PB,BC的中點(diǎn).以A為原點(diǎn),射線AB,AC,AP分別為x,y,z軸正向建立如圖空間直角坐標(biāo)系.
(Ⅰ)證明:CM⊥SN;
(Ⅱ)求SN與平面CMN所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
已知圓,圓,分別是圓上的動(dòng)點(diǎn),為軸上的動(dòng)點(diǎn),則的最小值為 ( )
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)
一個(gè)幾何體是由圓柱和三棱錐組合而成,點(diǎn)、、在圓的圓周上,其正(主)視圖、側(cè)(左)視圖的面積分別為10和12,如圖3所示,其中,,,.
(1)求證:;
(2)求二面角的平面角的大。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com