已知數(shù)列{an}的前n項和為Sn,且a1+2a2+3a3+…+nan=(n-1)Sn+2n,n∈N+
(1)求數(shù)列{an}的通項公式;
(2)證明:(1-
1
a
2
1
)(1-
1
a
2
2
)(1-
1
a
2
3
)…(1-
1
a
2
n
)>
2
5
考點:數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:(1)根據(jù)a1+2a2+3a3+…+nan=(n-1)Sn+2n(n∈N*),再寫一式,兩式相減,化簡可得{Sn+2}是以4為首項,2為公比的等比數(shù)列,求出Sn=2n+1-2,即可得到結(jié)論.
(2)1-
1
a
2
n
=1-
1
(2n)2
=1-
1
4n
,(1-
1
a
2
1
)(1-
1
a
2
2
)(1-
1
a
2
3
)…(1-
1
a
2
n
)=(1-
1
4
)(1-
1
42
)(1-
1
43
)…(1-
1
4n
)>1-(
1
4
+
1
42
+…+
1
4n
)即可得出證明.
解答: (1)解:∵a1+2a2+3a3+…+nan=(n-1)Sn+2n(n∈N*),①
∴當(dāng)n≥2時,a1+2a2+3a3+…+(n-1)an-1=(n-2)Sn-1+2(n-1).②
①-②得nan=(n-1)Sn-(n-2)Sn-1+2
∴nan=n(Sn-Sn-1)-Sn+2Sn-1+2
∴nan=nan-Sn+2Sn-1+2.
∴-Sn+2Sn-1+2=0,即Sn=2Sn-1+2,
∴Sn+2=2(Sn-1+2).
∵S1+2=4≠0,∴Sn-1+2≠0,
∴{Sn+2}是以4為首項,2為公比的等比數(shù)列.
∴Sn+2=2n+1,
∴Sn=2n+1-2,
∴n≥2時,an=Sn-Sn-1=2n,
n=1時,a1=S1=2,也滿足上式,
∴an=2n
(2)證明:1-
1
a
2
n
=1-
1
(2n)2
=1-
1
4n
,
∴(1-
1
a
2
1
)(1-
1
a
2
2
)(1-
1
a
2
3
)…(1-
1
a
2
n
)=(1-
1
4
)(1-
1
42
)(1-
1
43
)…(1-
1
4n
)>1-(
1
4
+
1
42
+…+
1
4n
)=1-
1
4
(1-
1
4n
)
1-
1
4
=1-
1
3
(1-
1
4n
)>
2
3
2
5

∴(1-
1
a
2
1
)(1-
1
a
2
2
)(1-
1
a
2
3
)…(1-
1
a
2
n
)>
2
5
點評:本題考查數(shù)列遞推式,考查等比數(shù)列的證明及不等式的證明,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

k進(jìn)制數(shù)32501(k),則k不可能是( 。
A、5B、6C、7D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在平面直角坐標(biāo)系xOy中,橢圓E的中心為原點,焦點F1、F2在x軸上,離心率為
1
3
,過點F1的直線l交E于M、N兩點,且△MNF2的周長為4
3
,設(shè)橢圓E與曲線|y|=kx(k>0)的交點為A、B,求△OAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xoy中,點A,B的坐標(biāo)分別是(0,-3),(0,3)直線AM,BM相交于點M,且它們的斜率之積是-
1
2

(1)求點M的軌跡L的方程;
(2)若直線L經(jīng)過點P(4,1),與軌跡L有且僅有一個公共點,求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

是否存在整數(shù)k和銳角α使得3sin2x+3
3
sinxcosx+4cos2x+k-
1
2
寫成sin(2x+α)的形式,若存在求他們的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,點B(0,1),且點A(a,0)(a≠0)是x軸上動點,過點A作線段AB的垂線交y軸于點D,在直線AD上取點P,使AP=DA.
(Ⅰ)求動點P的軌跡C的方程;
(Ⅱ)點Q是直線y=-1上的一個動點,過點Q作軌跡C的兩條切線切點分別為M,N求證:QM⊥QN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(3,1),
b
=(-2,
1
2
),則下列向量可以與
a
+2
b
垂直的是(  )
A、(-1,2)
B、(2,-1)
C、(4,2)
D、(-4,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a是第二象限角,則
sina
cosa
1
sin2a
-1=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知g(x)=(x-a)2+(lnx-a)2,求證:g(x)≥
1
2

查看答案和解析>>

同步練習(xí)冊答案