已知函數(shù)f(x)=ax3+bx2+c(x∈R)的圖像與直線15x-y+10=0切于點(-1,-5),且函數(shù)f(x)在x=4處取得極值.

(Ⅰ)求f(x)的解析式;

(Ⅱ)求f(x)的極值;

(Ⅲ)當x∈[-m,m]時,求f(x)最大值.

解:(1)f′(x)=3 ax2+2bx

∵f(x)的圖像與直線15x-y+10=0切于點(-1,-5)

        ①

又f(x)在x=4處取得極值,∴48a+8b=0②

由①②得∴

∴f(x)=x3-6x2+2

(Ⅱ)f′(x)=3x2-12x=3x(x-4)

令f′(x)=3x(x-4)=0得x=0,x=4

列表如下:

x

(-∞,0)

0

(0,4)

4

(4,+∞)

f′(x)

+

0

-

0

+

f(x)

2

-30

從而當x=0時,f(x)的極大值為2

從而當x=4時,f(x)的極小值為-30

(Ⅲ)據(jù)(Ⅱ)知f(0)=2是極大值,在(4,+∞)內函數(shù)f(x)單調遞增,并且可驗證f(6)=2,據(jù)已知條件知m>0

當0<m≤6時,f(x)的最大值是f(0)=2

當m>6時,f(x)的最大值是m3-6m2+2


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a-
12x+1

(1)求證:不論a為何實數(shù)f(x)總是為增函數(shù);
(2)確定a的值,使f(x)為奇函數(shù);
(3)當f(x)為奇函數(shù)時,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)圖象經(jīng)過點Q(8,6).
(1)求a的值,并在直線坐標系中畫出函數(shù)f(x)的大致圖象;
(2)求函數(shù)f(t)-9的零點;
(3)設q(t)=f(t+1)-f(t)(t∈R),求函數(shù)q(t)的單調遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a-
1
2x+1
,若f(x)為奇函數(shù),則a=( 。
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
a(x-1)x2
,其中a>0.
(I)求函數(shù)f(x)的單調區(qū)間;
(II)若直線x-y-1=0是曲線y=f(x)的切線,求實數(shù)a的值;
(III)設g(x)=xlnx-x2f(x),求g(x)在區(qū)間[1,e]上的最小值.(其中e為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定義域;
(2)若f(x)為奇函數(shù),求a的值;
(3)考察f(x)在定義域上單調性的情況,并證明你的結論.

查看答案和解析>>

同步練習冊答案