(本題滿分12分)已知定義域為(0,+∞)的函數(shù)f(x)滿足:
①x>1時,f(x)<0,②f()=1,③對任意x,y( 0,+∞),
都有f(xy)= f(x)+ f(y),求不等式f(x)+ f(5-x)≥-2的解集。
。
解析試題分析:(1)構造函數(shù)中兩個任意變量的函數(shù)值差,結(jié)合函數(shù)表達式得到函數(shù)單調(diào)性的證明。
(2)結(jié)合特殊值的函數(shù)值,得到f(4)=-2,進而得到函數(shù)的不等式的求解。
解:設0<x1<x2,則>1,∵f(xy)= f(x)+ f(y)
∴f(x2)= f()= f()+ f(x1)
又∵x>1時,f(x)<0,∴f()<0
∴f(x2)<f(x1),∴f(x)是( 0,+∞)上的減函數(shù)。又∵f(1)= f(1)+ f(1)
∴f(1)=0,而f()=1,∴f(2?)= f(2)+ f()=0
∴f(2)=-1,∴f(x)+ f(5-x)≥-2="2" f(2)= f(4)
∴,∴0<x≤1,或4≤x<5
∴原不等式的解集是。
考點:本題主要考查了函數(shù)的單調(diào)性的運用。
點評:解決該試題的關鍵是能利用已知條件分析得到函數(shù)的單調(diào)性的證明,結(jié)合已知的關系式將所求的表示為一個整體函數(shù)式,同時能結(jié)合單調(diào)性得到求解。
科目:高中數(shù)學 來源: 題型:解答題
(10分)設為奇函數(shù),為常數(shù).
(1)求的值;
(2)證明在區(qū)間內(nèi)單調(diào)遞增;
(3)若對于區(qū)間[3,4]上的每一個的值,不等式>恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)
已知函數(shù).
(1)求證:函數(shù)在上是單調(diào)遞增函數(shù);
(2)當時,求函數(shù)在上的最值;
(3)函數(shù)在上恒有成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知定義域為的函數(shù)同時滿足:
①對于任意的,總有; ②;
③若,則有成立。
求的值;
求的最大值;
若對于任意,總有恒成立,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分13分)已知函數(shù)為奇函數(shù);
(1)求以及m的值;
(2)在給出的直角坐標系中畫出的圖象;
(3)若函數(shù)有三個零點,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知平面上的線段l及點P,在l上任取一點Q,線段PQ長度的最小值稱為點P到線段l的距離,記作。
(1)已知點,線段,求;
(2)設A(-1,0),B(1,0),求點集所表示圖形的面積;
(3)若M(0,1),O(0,0),N(2,0),畫出集合所表示的圖形。(本題滿分14分)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)函數(shù)是R上的偶函數(shù),且當時,函數(shù)解析式為,
(Ⅰ)求的值;
(Ⅱ)求當時,函數(shù)的解析式。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com