【題目】(本小題滿分12分)已知橢圓()的半焦距為,原點到經過兩點,的直線的距離為.
(Ⅰ)求橢圓的離心率;
(Ⅱ)如圖,是圓的一條直徑,若橢圓經過,兩點,求橢圓的方程.
【答案】(Ⅰ);(Ⅱ).
【解析】
試題(Ⅰ)先寫過點,的直線方程,再計算原點到該直線的距離,進而可得橢圓的離心率;(Ⅱ)先由(Ⅰ)知橢圓的方程,設的方程,聯立,消去,可得和的值,進而可得,再利用可得的值,進而可得橢圓的方程.
試題解析:(Ⅰ)過點,的直線方程為,
則原點到直線的距離,
由,得,解得離心率.
(Ⅱ)解法一:由(Ⅰ)知,橢圓的方程為. (1)
依題意,圓心是線段的中點,且.
易知,不與軸垂直,設其直線方程為,代入(1)得
設則
由,得解得.
從而.
于是.
由,得,解得.
故橢圓的方程為.
解法二:由(Ⅰ)知,橢圓的方程為. (2)
依題意,點,關于圓心對稱,且.
設則,,
兩式相減并結合得.
易知,不與軸垂直,則,所以的斜率
因此直線方程為,代入(2)得
所以,.
于是.
由,得,解得.
故橢圓的方程為.
科目:高中數學 來源: 題型:
【題目】已知函數(0<φ<π)
(1)當φ時,在給定的坐標系內,用“五點法”做出函數f(x)在一個周期內的圖象;
(2)若函數f(x)為偶函數,求φ的值;
(3)在(2)的條件下,求函數在[﹣π,π]上的單調遞減區(qū)間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在測試中,客觀題難度的計算公式為,其中為第題的難度, 為答對該題的人數, 為參加測試的總人數.現對某校高三年級120名學生進行一次測試,共5道客觀題.測試前根據對學生的了解,預估了每道題的難度,如下表所示:
題號 | 1 | 2 | 3 | 4 | 5 |
考前預估難度 | 0.9 | 0.8 | 0.7 | 0.6 | 0.4 |
測試后,從中隨機抽取了10名學生,將他們編號后統計各題的作答情況,如下表所示(“√”表示答對,“×”表示答錯):
學生編號 題號 | 1 | 2 | 3 | 4 | 5 |
1 | × | √ | √ | √ | √ |
2 | √ | √ | √ | √ | × |
3 | √ | √ | √ | √ | × |
4 | √ | √ | √ | × | × |
5 | √ | √ | √ | √ | √ |
6 | √ | × | × | √ | × |
7 | × | √ | √ | √ | × |
8 | √ | × | × | × | × |
9 | √ | √ | × | × | × |
10 | √ | √ | √ | √ | × |
(Ⅰ)根據題中數據,將抽樣的10名學生每道題實測的答對人數及相應的實測難度填入下表,并估計這120名學生中第5題的實測答對人數;
題號 | 1 | 2 | 3 | 4 | 5 |
實測答對人數 | |||||
實測難度 |
(Ⅱ)從編號為1到5的5人中隨機抽取2人,求恰好有1人答對第5題的概率;
(Ⅲ)定義統計量,其中為第題的實測難度, 為第題的預估難度.規(guī)定:若,則稱該次測試的難度預估合理,否則為不合理.判斷本次測試的難度預估是否合理.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《九章算術》是我國古代數學成就的杰出代表.其中《方田》章給出計算弧田面積所用的經驗公式為:弧田面積=(弦矢+矢2).弧田(如圖),由圓弧和其所對弦所圍成,公式中“弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差.
按照上述經驗公式計算所得弧田面積與其實際面積之間存在誤差.現有圓心角為,弦長等于9米的弧田.
(1)計算弧田的實際面積;
(2)按照《九章算術》中弧田面積的經驗公式計算所得結果與(1)中計算的弧田實際面積相差多少平方米?(結果保留兩位小數)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校高一新生共有320人,其中男生192人,女生128人.為了解高一新生對數學選修課程的看法,采用分層抽樣的方法從高一新生中抽取5人進行訪談.
(Ⅰ)這5人中男生、女生各多少名?
(Ⅱ)從這5人中隨即抽取2人完成訪談問卷,求2人中恰有1名女生的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線C1的參數方程為(t為參數),以O為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ2(1+sin2θ)=2,點M的極坐標為(,).
(1)求點M的直角坐標和C2的直角坐標方程;
(2)已知直線C1與曲線C2相交于A,B兩點,設線段AB的中點為N,求|MN|的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com