(1)求證:4×6n+5n+1-9能被20整除;

(2)已知2n+2·3n+5n-a能被25整除,求a的最小正數(shù)值.

 

 

(1)證明:4×6n-9=4(5+1)n-9=4(5n+·5n-1+…+·5+1)-9

=4(5n+·5n-1+…+·5)-5

=5[4(5n-1++…+)-1]

是5的倍數(shù),因此4×6n+5n+1-9是5的倍數(shù).

又∵5n+1-9=(4+1)n+1-9=4n+1+·4n+·4n-1+…+·4+1-9

=4·(4n+·4n-1+…+-2)

是4的倍數(shù),因此4×6n+5n+1-9是4的倍數(shù).

∴4×6n+5n+1-9既是4的倍數(shù),又是5的倍數(shù).由于4與5互質(zhì),

∴4×6n+5n+1-9能被20整除.

(2)解:n≥2時,

4×6n+5n-a=4(5+1)n+5n-a

=4(5n+C1n·5n-1+…+·5+1)+5n-a

=4×52(5n-2+·5n-3+…+)+20n+4+5n-a

=25×4(5n-2+·5n-3+…+)+25n+4-a

能被25整除時a=4為最小正數(shù).

當(dāng)n=1時,原式=24+5-a能被25整除時a的最小正數(shù)是4.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=-1,an+1=
(3n+3)an+4n+6
n

(1)求數(shù)列(an)的通項公式;
(2)令bn=
3n-1
an+2
,數(shù)列{bn}的前n項和為Sn,求證:當(dāng)n≥2時Sn2>2(
S2
2
+
S3
3
+…+
Sn
n
)
;
(4)證明:bn+1+bn+2+…+b2n
4
5
(5).

查看答案和解析>>

同步練習(xí)冊答案