1.已知等比數(shù)列{an}滿足a1=3,a1+a3+a5=21,則a3+a5+a7=42.

分析 根據(jù)等比數(shù)列的通項(xiàng)公式,結(jié)合題意,即可求出對(duì)應(yīng)的結(jié)果.

解答 解:等比數(shù)列{an}中,a1=3,
a1+a3+a5=a1+a1q2+a1q4=3(1+q2+q4)=21,
即1+q2+q4=7,
解得q2=2或q2=-3(不合題意,舍去);
所以a3+a5+a7=a1q2(1+q2+q4)=3×2×7=42.
故答案為:42.

點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式與應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.某汽車廠為某種型號(hào)汽車的外殼設(shè)計(jì)了4種不同的式樣和2種不同的顏色,那么該型號(hào)汽車共有8種不同的外殼.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.等腰梯形ABCD中,AB∥CD,DC=AD=2,∠A=60°,則$\overrightarrow{AC}$•$\overrightarrow{BD}$=( 。
A.6B.-6C.-3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若向量$\overrightarrow a$=(2,m),$\overrightarrow b$=(1,$\sqrt{3}}$),且$\overrightarrow a+\overrightarrow b$與$\overrightarrow a-\overrightarrow b$垂直,則實(shí)數(shù)m的值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.某市16個(gè)交通路段中,在早高峰期間與7個(gè)路段比較擁堵,現(xiàn)從中任意選10個(gè)路段,用X表示這10個(gè)路段中交通比較擁堵的路段數(shù),則P(X=4)=(  )
A.$\frac{{C}_{7}^{4}{•C}_{9}^{6}}{{C}_{16}^{10}}$B.$\frac{{C}_{10}^{4}{•C}_{10}^{6}}{{C}_{16}^{10}}$
C.$\frac{{C}_{7}^{4}{•C}_{9}^{6}}{{C}_{16}^{7}}$D.$\frac{{C}_{16}^{7}{•C}_{16}^{3}}{{C}_{16}^{10}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,長(zhǎng)方體ABCD-A1B1C1D1中,底面ABCD是正方形,AA1=2AB=2,E是DD1上的一點(diǎn),且滿足B1D⊥平面ACE.
(Ⅰ)求證:A1D⊥AE;
(Ⅱ)求二面角D-AE-C的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖所示,已知四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,AB∥CD,AB⊥AD,AB=2AD=2AP=2CD=2,E是棱PC上一點(diǎn),且CE=2PE.
(1)求證:AE⊥平面PBC;
(2)求二面角A-PC-D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖△ABC的角平分線AD的延長(zhǎng)線交它的外接圓于點(diǎn)E.
(Ⅰ)證明:△ABE∽△ADC;
(Ⅱ)若BC為△ABC外接圓的直徑且AD•AE=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且(Sn-1)2=anSn(n∈N*).
(1)求出S1,S2,S3的值,并求出Sn及數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=(-1)n+1•(an+an+1)(n∈N*),求數(shù)列{bn}的前n項(xiàng)和Tn;
(3)設(shè)cn=(n+1)•an(n∈N*),在數(shù)列{cn}中取出m(m∈N*且m≥3)項(xiàng),按照原來(lái)的順序排列成一列,構(gòu)成等比數(shù)列{dn},若對(duì)任意的數(shù)列{dn},均有d1+d2+…+dn≤M,試求M的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案