4.行列式中$|\begin{array}{l}{6}&{-3}&{1}\\{2}&{5}&{k}\\{1}&{4}&{-2}\end{array}|$中元素-3的代數(shù)余子式的值為7,則k=3.

分析 由題意可知求得A12=-$|\begin{array}{l}{2}&{k}\\{1}&{-2}\end{array}|$=k+4,代入即可求得k的值.

解答 解:由題意可知:設(shè)A=$|\begin{array}{l}{6}&{-3}&{1}\\{2}&{5}&{k}\\{1}&{4}&{-2}\end{array}|$,
元素-3的代數(shù)余子式A12=-$|\begin{array}{l}{2}&{k}\\{1}&{-2}\end{array}|$=k+4,
∴k+4=7,
∴k=3,
故答案為:3.

點評 本題考查三階行列式的代數(shù)余子式的定義及行列式的運算,考察計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,已知△ABC中,B=90°,∠C的平分線交AB于D,以AD為直徑的圓O交AC于點E、交CD于點F.
(1)求證:AE•AC=AD•AB;
(2)若BD=1,BC=$\sqrt{3}$,求點F到線段AC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.把y=sin(2x+$\frac{π}{4}$)的圖象上所有的點向右平移$\frac{π}{8}$個單位,再把橫坐標擴大到原來的2倍,則所得的圖象的解析式為y=sinx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知直三棱柱ABC-A1B1C1中,AB⊥AC,AB=3,AC=4,B1C⊥AC1
(1)求AA1的長.
(2)在線段BB1存在點P,使得二面角P-A1C-A大小的余弦值為$\frac{\sqrt{3}}{3}$,求$\frac{BP}{B{B}_{1}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在正方體ABCD-A1B1C1D1中.P和Q分別是BC和CD的中點,求:
(1)A1D與PQ所成角的大;
(2)A1Q與平面B1PB所成角的余弦值;
(3)二面角C一D1B1-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=lnx+ax在點(t,f(t))處切線方程為y=2x-1
(Ⅰ)求a的值
(Ⅱ)若$-\frac{1}{2}≤k≤2$,證明:當(dāng)x>1時,$f(x)>k({1-\frac{3}{x}})+x-1$
(Ⅲ)對于在(0,1)中的任意一個常數(shù)b,是否存在正數(shù)x0,使得:${e^{f({{x_0}+1})-2{x_0}-1}}+\frac{2}x_0^2<1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.如圖,已知二面角α-l-β的大小為60°,點A∈α,點B是點A在平面β內(nèi)的射影,且AB=2,則點B到平面α的距離為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在直角坐標系xoy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$(θ為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程是$\sqrt{2}$ρsin(θ-$\frac{π}{4}$)=1
(Ⅰ)求曲線C1的普通方程和曲線C2的直角坐標方程;
(Ⅱ)曲線C1和曲線C2相交于點M,N,求通過M,N兩點的圓中面積最小的圓的標準方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.方程($\frac{1}{2}$)x=|lgx|兩根為x1,x2,且x1•x2滿足關(guān)系式為( 。
A.x1x2>1B.0<x1x2<1C.x1x2=1D.x1x2<1

查看答案和解析>>

同步練習(xí)冊答案