為了整頓道路交通秩序,某地考慮將對行人闖紅燈進行處罰.為了更好地了解市民的態(tài)度,在普通行人中隨機選取了200人進行調(diào)查,得到如表數(shù)據(jù):
處罰金額x(元)05101520
會闖紅燈的人數(shù)y8050402010
(Ⅰ)若用表中數(shù)據(jù)所得頻率代替概率,則處罰10元時與處罰20元時,行人會闖紅燈的概率的差是多少?
(Ⅱ)若從這5種處罰金額中隨機抽取2種不同的金額進行處罰,在兩個路口進行試驗.
①求這兩種金額之和不低于20元的概率;
②若用X表示這兩種金額之和,求X的分布列和數(shù)學期望.
考點:離散型隨機變量的期望與方差,相互獨立事件的概率乘法公式
專題:概率與統(tǒng)計
分析:(Ⅰ)由用表中數(shù)據(jù)所得頻率代替概率,能求出處罰10元會闖紅燈的概率與罰20元會闖紅燈的概率的差.
(Ⅱ)①設“兩種金額之和不低于20元”的事件為A,從5種金額中隨機抽取2種,總的選法有
C
2
5
=10種,滿足金額之和不低于20元的有6種,由此能求出所求的概率.
②根據(jù)條件,X的可能取值為5,10,15,20,25,30,35,由此能求出X的分布列和數(shù)學期望.
解答: (本小題滿分12分)
解:(Ⅰ)由題意知,處罰10元會闖紅燈的概率與罰20元會闖紅燈的概率的差是:
40
200
-
10
200
=
3
20

(Ⅱ)①設“兩種金額之和不低于20元”的事件為A,
從5種金額中隨機抽取2種,總的選法有
C
2
5
=10種,滿足金額之和不低于20元的有6種,
故所求的概率為:P(A)=
6
10
=
3
5
 

②根據(jù)條件,X的可能取值為5,10,15,20,25,30,35,
分布列為:
 X 5 10 15 20 25 30 35
 P(X) 
1
10
 
1
10
 
1
5
 
1
5
 
1
5
 
1
10
 
1
10
EX=
1
10
+10×
1
10
+15×
1
5
+20×
1
5
+25×
1
5
+30×
1
10
+35×
1
10
=20.
點評:本題考查概率的求法,考查離散型隨機變量的分布列和數(shù)學期望的求法,解題時要認真審題,是中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=tan(x+1)+tan(x+2)+tan(x+3)+…+tan(x+2015)圖象的對稱中心是( 。
A、(-1007,0)
B、(-1008,0)
C、(1007,0)
D、(1008,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在實數(shù)的原有運算法則中,我們補充定義新運算a?b,運算原理如圖所示,則函數(shù)f(x)=(tan
4
?x)•x-(lg100?x)(x∈[-2,2])的最大值等于(“•”和“-”仍為通常的乘法和減法)( 。
A、-1B、1C、6D、12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知p,q都是r的必要條件,s是r的充分條件,q是s的充分條件,那么
(1)s是q的什么條件?
(2)r是q的什么條件?
(3)p是q的什么條件?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的首項a1=2,前n項和Sn滿足an+1=Sn+2(n∈N*).
(1)求數(shù)列{an}的通項公式
(2)若bn=2log2an,對一切n∈N*,
1
b1b2
+
1
b2b3
+
1
b3b4
+…+
1
bnbn+1
<t恒成立,求實數(shù)t的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設向量
a
=(5
3
cosx,cosx),
b
=(sinx,2cosx),函數(shù)f(x)=
a
b
+|
b
|2+
3
2

(1)求x∈[-
π
6
π
2
]時,求函數(shù)f(x)的值域.
(2)將y=f(x)的圖象向右平移φ(φ>0)個單位后,再將得到的圖象向下平移5個單位,得到函數(shù)y=g(x)的圖象,若函數(shù)y=g(x)是偶函數(shù),求φ的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,江邊有一座高為30m的瞭望塔AB,江中有兩條船C、D,由塔頂A測得兩船C、D的俯角分別為45°和30°,而且兩條船C、D與塔底部B連線所成的∠CBD大小為30°,求兩條船C、D間的距離為多少米?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知曲線C的方程為y2=4x,過原點作斜率為1的直線和曲線C相交,另一個交點記為P1,過P1作斜率為2的直線與曲線C相交,另一個交點記為P2,過P2作斜率為4的直線與曲線C相交,另一個交點記為P3,…,如此下去,一般地,過點Pn作斜率為2n的直線與曲線C相交,另一個交點記為Pn+1,設點Pn(xn,yn)(n∈N*).
(1)指出y1,并求yn+1與yn的關系式(n∈N*);
(2)求{y2n-1}(n∈N*)的通項公式,并指出點列P1,P3,…,P2n+1,…向哪一點無限接近?說明理由;
(3)令an=y2n+1-y2n-1,數(shù)列{an}的前n項和為Sn,試比較
3
4
Sn+1與
1
3n+10
的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:方程x2+ax-2a2=0在(-1,1)上有解;命題q:函數(shù)f(x)=loga(x2-2ax+2)在[2,3]上單調(diào)遞增,若命題“p∨q”是真命題,“p∧q”是假命題,求a的取值范圍.

查看答案和解析>>

同步練習冊答案