過拋物線的焦點(diǎn)F的直線l與拋物線在第一象限的交點(diǎn)為A,直線l與拋物線的準(zhǔn)線的交點(diǎn)為B,點(diǎn)A在拋物線的準(zhǔn)線上的射影為C,若,,則拋物線的方程為        .

 

【答案】

【解析】

試題分析:設(shè)拋物線的準(zhǔn)線與x軸的交點(diǎn)為D,依題意,F(xiàn)為線段AB的中點(diǎn),

故|AF|=|AC|=2|FD|=2p,

|AB|=2|AF|=2|AC|=4p,

∴∠ABC=30°,p,,解得p=

∴拋物線的方程為.故答案為.

考點(diǎn):拋物線的標(biāo)準(zhǔn)方程,平面向量的數(shù)量積。

點(diǎn)評(píng):中檔題,本題將拋物線與平面向量結(jié)合在一起考查,增強(qiáng)了tm的綜合性,增大了難度。解答中注意結(jié)合圖形的特征,確定得到線段長度關(guān)系,為解題提供了有利條件。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江西省高三第六次模擬考試數(shù)學(xué)理卷 題型:選擇題

過拋物線的焦點(diǎn)F作傾斜角為的直線交拋物線于A、B兩點(diǎn),使,過點(diǎn)A作與x軸重直的直線交拋物線于點(diǎn)C,則△BCF的面積是(   )

A.64      B.32     C.16    D.8

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年浙江省教育考試院高考測試樣卷(理) 題型:解答題

   已知拋物線C的頂點(diǎn)在原點(diǎn), 焦點(diǎn)為F(0, 1).

(Ⅰ) 求拋物線C的方程;

(Ⅱ) 在拋物線C上是否存在點(diǎn)P, 使得過點(diǎn)P的直

線交C于另一點(diǎn)Q, 滿足PF⊥QF, 且PQ與C

在點(diǎn)P處的切線垂直? 若存在, 求出點(diǎn)P的坐標(biāo);

若不存在, 請(qǐng)說明理由.

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:高考真題 題型:解答題

已知拋物線C:y2=4x的焦點(diǎn)為F,過點(diǎn)K(-1,0)的直l與C相交于A、B兩點(diǎn),點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)為D。 (1)證明:點(diǎn)F在直線BD上;
(2)設(shè)=,求△BDK的內(nèi)切圓M的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線的焦點(diǎn)F作傾斜角為的直線交拋物線于A、B兩點(diǎn),使,過點(diǎn)A作與x軸重直的直線交拋物線于點(diǎn)C,則△BCF的面積是(   )

A.64      B.32     C.16    D.8

查看答案和解析>>

同步練習(xí)冊答案