如圖,在四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,AB=PA=1,AD=
3
,F(xiàn)是PB中點(diǎn),E為BC上一點(diǎn).
(Ⅰ)求證:AF⊥平面PBC;
(Ⅱ)當(dāng)BE為何值時(shí),二面角C-PE-D為45°.
考點(diǎn):與二面角有關(guān)的立體幾何綜合題,直線與平面垂直的判定
專題:空間位置關(guān)系與距離,空間角
分析:(Ⅰ)以A為原點(diǎn),AD為x軸,AB為y軸,AP為z軸,建立空間直角坐標(biāo)系,利用向量法能證明AF⊥平面PBC.
(Ⅱ)設(shè)BE=a,E(a,1,0求出平面PDE的法向量和平面PCE的法向量,利用向量法能求出當(dāng)BE=
5
3
6
時(shí),二面角C-PE-D為45°.
解答: (Ⅰ)證明:以A為原點(diǎn),AD為x軸,AB為y軸,AP為z軸,建立空間直角坐標(biāo)系,
∵AB=PA=1,AD=
3
,F(xiàn)是PB中點(diǎn),
∴A(0,0,0),P(0,0,1),B(0,1,0),C(
3
,1,0),
PB
=(0,1,-1)
,
PC
=(
3
,1,-1)
,F(xiàn)(0,
1
2
,
1
2
),
AF
=(0,
1
2
,
1
2
),
AF
PB
=0,
AF
PB
=0
,
∴AF⊥PB,AF⊥PB,
∴AF⊥平面PBC.
(Ⅱ)設(shè)BE=a,∴E(a,1,0),
DE
=(a-
3
,1,0)
,
PD
=(
3
,0,-1)

設(shè)平面PDE的法向量
n
=(x,y,z)

n
DE
=(a-
3
)x+y=0
n
PD
=
3
x-z=0
,
取x=1,得
n
=(1,
3
-a
3
),
平面PCE的法向量為
AF
=(0,
1
2
,
1
2
)
,
∵二面角C-PE-D為45°,
∴cos<
n
,
AF
>=
3
-
1
2
a
2
2
a2-2
3
a+7
=
2
2
,
解得a=
5
3
6
,
∴當(dāng)BE=
5
3
6
時(shí),二面角C-PE-D為45°.
AF⊥平面PBC.
點(diǎn)評(píng):本題考查直線與平面垂直的證明,考查使得二面角為45°的線段長(zhǎng)的求法,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

π
3
0
cosxdx=(  )
A、-
3
2
B、
3
2
C、
1
2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知不等式|t+3|-|t-2|≤6m-m2對(duì)任意t∈R恒成立.
(Ⅰ)求實(shí)數(shù)m的取值范圍;
(Ⅱ)若(Ⅰ)中實(shí)數(shù)m的最大值為λ,且3x+4y+5z=λ,其中x,y,z∈R,求x2+y2+z2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
mx2+8x+n
x2+1
的定義域?yàn)镽,值域?yàn)閇0,8],求實(shí)數(shù)m,n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若數(shù)列{an}滿足an+T=an,其中T為非零正常數(shù),則稱數(shù)列{an}為周期數(shù)列,T為數(shù)列{an}的周期.
(Ⅰ)設(shè){bn}是周期為7的數(shù)列,其中b1,b2,…,b7是等比數(shù)列,且b2=3,b4=7,求b2014
(Ⅱ)設(shè){cn}是周期為7的數(shù)列,其中c1,c2,…,c7是等比數(shù)列,且c1=1,c11=8,對(duì)于(Ⅰ)中數(shù)列{bn},記Sn=b1c1+b2c2+…+bncn,若Sn>2014,求n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn):
(1)
sin(π-α)
cos(-α)tan(π+α)
;
(2)
cos(360°-α)tan(180°+α)
sin(180°-α)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
4ex
ex+1

(1)用兩種方法判斷函數(shù)f(x)的單調(diào)性,并求值域;
(2)求函數(shù)y=f(x)圖象的一個(gè)對(duì)稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在一個(gè)盒子中放有大小質(zhì)量相同的四個(gè)小球,標(biāo)號(hào)分別為1,2,3,4,現(xiàn)從這個(gè)盒子中有放回地先后摸出兩個(gè)小球,它們的標(biāo)號(hào)分別為x,y,記ξ=|x-y|.
(1)求P(ξ=1);
(2)求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,平面ABB1A1為圓柱OO1的軸截面,點(diǎn)C為
AB
上的點(diǎn),點(diǎn)M為BC中點(diǎn).
(1)求證:B1M∥平面O1AC;
(2)若2r=AB=AA1,∠CAB=30°,求三棱錐A到平面O1BM的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案