分析 (1)設(shè)通曉英語(yǔ)的有x人,通曉日語(yǔ)的有y人,通曉韓語(yǔ)的有z人,且x,y,z∈N*,根據(jù)通曉中文和英語(yǔ)的概率為$\frac{1}{2}$,通曉中文和日語(yǔ)的概率為$\frac{3}{10}$.若通曉中文和韓語(yǔ)的人數(shù)不超過(guò)3人,列出關(guān)于所設(shè)的人數(shù)的表示式,解出結(jié)果.
(2)本題是一個(gè)等可能事件的概率,先做出兩個(gè)人全被選中的概率,用對(duì)立事件的概率公式得到甲和乙不全被選中的概率.
解答 解:(1)設(shè)通曉英語(yǔ)的有x人,通曉日語(yǔ)的有y人,通曉韓語(yǔ)的有z人,且x,y,z∈N*
則依題意有:$\left\{\begin{array}{l}{\frac{x}{x+y+z}=\frac{1}{2}}\\{\frac{y}{x+y+z}=\frac{3}{10}}\\{0<z≤3}\end{array}\right.$,∴x=5,y=3,z=2,所以,這組志愿者有5+3+2=10人.…3分
(2)用A表示事件“甲、乙不全被選中”,則A的對(duì)立事件$\overline{A}$表示“甲、乙全被選中”…4分
則P($\overline{A}$)=$\frac{1}{{C}_{5}^{1}{C}_{2}^{1}}$=$\frac{1}{10}$
所以甲和乙不全被選中的概率為1-$\frac{1}{10}$=$\frac{9}{10}$.
點(diǎn)評(píng) 本題考查等可能事件的概率,考查對(duì)立事件的概率公式,考查古典概型的概率公式,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-1,1) | B. | (-1,0) | C. | (0,1) | D. | [-1,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1+$\frac{2}{e}$ | B. | $\frac{1}{2}$+$\frac{2}{e}$ | C. | 1+$\frac{1}{e}$ | D. | $\frac{1}{2}$+$\frac{1}{e}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | k=2,b=3 | B. | k=-2,b=3 | C. | k=1,b=1 | D. | k=-1,b=3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com