【題目】某班50名學(xué)生在一次百米測(cè)試中,成績(jī)?nèi)拷橛?3秒與18秒之間,將測(cè)試結(jié)果按如下方式分成五組;第一組[13,14),第二組[14,15),…,第五組[17,18],如圖是按上述分組方法得到的頻率分布直方圖.
(1)若成績(jī)大于或等于14秒且小于16秒認(rèn)為良好,求該班在這次百米測(cè)試中成績(jī)良好的人數(shù);
(2)設(shè)m,n表示該班某兩位同學(xué)的百米測(cè)試成績(jī),且已知m,n∈[13,14)∪[17,18],求事件“|m﹣n|>1”的概率.
【答案】
(1)解:由直方圖知,成績(jī)?cè)赱14,16)內(nèi)的人數(shù)為:50×0.16+50×0.38=27(人),
所以該班成績(jī)良好的人數(shù)為27人
(2)解:由直方圖知,成績(jī)?cè)赱13,14)的人數(shù)為50×0.06=3人,
設(shè)為為x,y,z;成績(jī)?cè)赱17,18]的人數(shù)為50×0.08=4人,設(shè)為A、B、C、D.
若m,n∈[13,14)時(shí),有xy,xz,yz共3種情況;
若m,n∈[17,18]時(shí),有AB,AC,AD,BC,BD,CD,共6種情況;
若m,n分別在[13,14)和[17,18]內(nèi)時(shí),
A | B | C | D | |
x | xA | xB | xC | xD |
y | yA | yB | yC | yD |
z | zA | zB | zC | zD |
有12種情況、
所以,基本事件總數(shù)為3+6+12=21種,事件“|m﹣n|>1”所包含的基本事件個(gè)數(shù)有12種、
∴
【解析】(1)利用頻率分布直方圖中的頻率等于縱坐標(biāo)乘以組距求出績(jī)大于或等于14秒且小于16秒的頻率;利用頻數(shù)等于頻率乘以樣本容量求出該班在這次百米測(cè)試中成績(jī)良好的人數(shù).(2)按照(1)的方法求出成績(jī)?cè)赱13,14)及在[17,18]的人數(shù);通過(guò)列舉得到m,n都在[13,14)間或都在[17,18]間或一個(gè)在[13,14)間一個(gè)在[17,18]間的方法數(shù),三種情況的和為總基本事件的個(gè)數(shù);分布在兩段的情況數(shù)是事件“|m﹣n|>1”包含的基本事件數(shù);利用古典概型的概率公式求出事件“|m﹣n|>1”的概率.
【考點(diǎn)精析】利用頻率分布直方圖和用樣本的頻率分布估計(jì)總體分布對(duì)題目進(jìn)行判斷即可得到答案,需要熟知頻率分布表和頻率分布直方圖,是對(duì)相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過(guò)作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息;樣本數(shù)據(jù)的頻率分布表和頻率分布直方圖,是通過(guò)各小組數(shù)據(jù)在樣本容量中所占比例大小來(lái)表示數(shù)據(jù)的分布規(guī)律,它可以讓我們更清楚的看到整個(gè)樣本數(shù)據(jù)的頻率分布情況,并由此估計(jì)總體的分布情況.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)雙曲線(xiàn) 的離心率e=2,右焦點(diǎn)為F(c,0),方程ax2+bx﹣c=0的兩個(gè)實(shí)根分別為x1和x2 , 則點(diǎn)P(x1 , x2) 滿(mǎn)足( )
A.必在圓x2+y2=2內(nèi)
B.必在圓x2+y2=2外
C.必在圓x2+y2=2上
D.以上三種情形都有可能
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)的參數(shù)方程為(為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立的極坐標(biāo)系中,圓的極坐標(biāo)方程為.
(1)求直線(xiàn)被圓截得的弦長(zhǎng);
(2)若點(diǎn)的坐標(biāo)為,直線(xiàn)與圓交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿(mǎn)足a1+3a2+32a3+…+3n﹣1an= ,n∈N+ .
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)anbn=n,求數(shù)列{bn}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)調(diào)查了某班全部45名同學(xué)參加書(shū)法社團(tuán)和演講社團(tuán)的情況,數(shù)據(jù)如下表:(單位:人)
參加書(shū)法社團(tuán) | 未參加書(shū)法社團(tuán) | |
參加演講社團(tuán) | 8 | 5 |
未參加演講社團(tuán) | 2 | 30 |
(1)從該班隨機(jī)選1名同學(xué),求該同學(xué)至少參加一個(gè)社團(tuán)的概率;
(2)在既參加書(shū)法社團(tuán)又參加演講社團(tuán)的8名同學(xué)中,有5名男同學(xué)A1 , A2 , A3 , A4 , A5 , 3名女同學(xué)B1 , B2 , B3 . 現(xiàn)從這5名男同學(xué)和3名女同學(xué)中各隨機(jī)選1人,求A1被選中且B1未被選中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某研究機(jī)構(gòu)對(duì)高三學(xué)生的記憶力x和判斷力y進(jìn)行統(tǒng)計(jì)分析,所得數(shù)據(jù)如表所示:
x | 6 | 8 | 10 | 12 |
y | 2 | 3 | 5 | 6 |
畫(huà)出上表數(shù)據(jù)的散點(diǎn)圖如圖所示
(其中 , = ﹣ )
(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線(xiàn)性回歸方程 = x+ .
(2)試根據(jù)(1)求出的線(xiàn)性回歸方程,預(yù)測(cè)記憶力為9的學(xué)生的判斷力
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若對(duì)于任意的x∈[﹣1,0],關(guān)于x的不等式3x2+2ax+b≤0恒成立,則a2+b2﹣2的最小值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在矩形ABCD中, ,點(diǎn)分別在邊上,且, 交于點(diǎn).現(xiàn)將沿折起,使得平面平面,得到圖2.
(Ⅰ)在圖2中,求證: ;
(Ⅱ)若點(diǎn)是線(xiàn)段上的一動(dòng)點(diǎn),問(wèn)點(diǎn)在什么位置時(shí),二面角的余弦值為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中.直線(xiàn)的參數(shù)方程為為(為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系取相同的長(zhǎng)度單位,且以原點(diǎn)為極點(diǎn).以軸非負(fù)半軸為極軸)中.圓的極坐標(biāo)方程是.
(1)寫(xiě)出直線(xiàn)的直角坐標(biāo)方程,并把圓的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)設(shè)圓上的點(diǎn)到直線(xiàn)的距離最小,點(diǎn)到直線(xiàn)的距離最大,求點(diǎn)的橫坐標(biāo)之積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com