①②③
分析:由方程2x|x|-y=1所確定的x,y的函數(shù)關(guān)系記為y=f(x),f(x)=2x|x|-1=
,分別畫(huà)出當(dāng)x≥0和x<0的函數(shù)圖象,它們分別是拋物線的一部分.如圖所示.結(jié)合觀察圖象可得答案.
解答:
解:由方程2x|x|-y=1所確定的x,y的函數(shù)關(guān)系記為y=f(x),
則f(x)=2x|x|-1=
,
分別畫(huà)出當(dāng)x≥0和x<0的函數(shù)圖象,它們分別是拋物線的一部分.如圖所示.
觀察圖象可知:
①f(x)是R上的單調(diào)遞增函數(shù); 正確;
②圖象關(guān)于點(diǎn)Q(0,-1)對(duì)稱,故對(duì)于任意x∈R,f(x)+f(-x)=-2恒成立;正確;
③當(dāng)點(diǎn)B是過(guò)點(diǎn)A(1,f(1)),B(x
0,f(x
0))的直線與曲線相切時(shí)的切點(diǎn)時(shí),過(guò)點(diǎn)A(1,f(1)),B(x
0,f(x
0))的直線與曲線f(x)恰有兩個(gè)公共點(diǎn),故存在x
0∈(-1,0),使得過(guò)點(diǎn)A(1,f(1)),B(x
0,f(x
0))的直線與曲線f(x)恰有兩個(gè)公共點(diǎn);正確.
故其中正確的結(jié)論為 ①②③.
故答案為:①②③.
點(diǎn)評(píng):本小題主要考查分段函數(shù)、函數(shù)單調(diào)性的應(yīng)用、函數(shù)對(duì)稱性的應(yīng)用、帶絕對(duì)值的函數(shù)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.