(2011•南充一模)在一個盒子中,放有標(biāo)號分別為1,2,3的三張卡片,現(xiàn)從這個盒子中,先抽一張卡片將標(biāo)號 記為x再放回抽出的卡片,又從盒子中抽一張卡片將標(biāo)號記為y,記隨機變量ξ=|x-2|+|y-x|.
①求ξ的最大值,并求出事件“ξ取得最大值”的概率;
②求隨機變量ξ的分布列和數(shù)學(xué)期望.
分析:(I)由題意知x、y可能的取值為1、2、3,做出要用的變量ξ的可能取得的最大值,根據(jù)等可能事件的概率寫出試驗發(fā)生包含的事件數(shù)和滿足條件的事件數(shù),求得概率.
(II)由題意知ξ的所有取值為0,1,2,3,結(jié)合變量對應(yīng)的事件和等可能事件的概率公式得到概率,即可寫出分布列和期望.
解答:解:(Ⅰ)∵x、y可能的取值為1、2、3,
∴|x-2|≤1,|y-x|≤2,
∴ξ≤3,且當(dāng)x=1,y=3或x=3,y=1時,ξ=3.
因此,隨機變量ξ的最大值為3.
∵有放回抽兩張卡片的所有情況有3×3=9種,
∴P(ξ=3)=
2
9

即隨機變量ξ的最大值為3,事件“ξ取得最大值”的概率為
2
9

(Ⅱ)由題意知ξ的所有取值為0,1,2,3.
∵ξ=0時,只有x=2,y=2這一種情況,
ξ=1時,有x=1,y=1或x=2,y=1或x=2,y=3或x=3,y=3四種情況,
ξ=2時,有x=1,y=2或x=3,y=2兩種情況.
P(ξ=0)=
1
9
,P(ξ=1)=
4
9
,P(ξ=2)=
2
9
,P(ξ=3)=
2
9

∴隨機變量ξ的分布列為:
ξ 0 1 2 3
P
1
9
4
9
2
9
2
9
∴數(shù)學(xué)期望Eξ=0×
1
9
+1×
4
9
+2×
2
9
+3×
2
9
=
14
9
點評:本題考查離散型隨機變量的分布列和期望,考查等可能事件的概率,考查利用概率知識解決實際問題,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•南充一模)已知函數(shù)f(x)=x+x3,x1,x2,x3∈R,x1+x2<0,x2+x3<0,x3+x1<0,那么f(x1)+f(x2)+f(x3)的值( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•南充一模)若直線2x-y+c=0按向量
a
=(1,-1)平移后與曲線
x=
5
cosθ
y=
5
sinθ
(θ為參數(shù))相切,則實數(shù)c等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•南充一模)若函數(shù)y=x2-3x-4的定義域是〔0,m〕,值域為〔-
25
4
,-4〕,則實數(shù)m的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•南充一模)在數(shù)列{an}中,a1=2,an+1=an+ln(1+
1
n
),則an=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•南充一模)使奇函數(shù)f(x)=sin(2x+θ)+
3
cos(2x+θ)在〔-
π
4
,0〕上為減函數(shù)的一個θ值為( 。

查看答案和解析>>

同步練習(xí)冊答案