【題目】在平面直角坐標(biāo)系中,圓,點(diǎn),過的直線與圓交于點(diǎn),過做直線平行于點(diǎn)

1)求點(diǎn)的軌跡的方程;

2)過的直線與交于兩點(diǎn),若線段的中點(diǎn)為,且,求四邊形面積的最大值.

【答案】1.2

【解析】

1)由題意可得,可得,則的軌跡是焦點(diǎn)為,,長(zhǎng)軸為的橢圓的一部分,再用待定系數(shù)法即可求出方程;

2)由題意設(shè)直線方程為,設(shè),,聯(lián)立直線與橢圓的方程,結(jié)合韋達(dá)定理表示出,可得,設(shè)四邊形的面積為,則,再根據(jù)基本不等式即可求出答案.

解:(1)因?yàn)?/span>,又因?yàn)?/span>,所以,

所以,

所以的軌跡是焦點(diǎn)為,長(zhǎng)軸為的橢圓的一部分,

設(shè)橢圓方程為

,所以,

所以橢圓方程為,

又因?yàn)辄c(diǎn)不在軸上,所以

所以點(diǎn)的軌跡的方程為

2)因?yàn)橹本斜率不為0,設(shè)為,

設(shè),聯(lián)立整理得

所以

所以

,∴

設(shè)四邊形的面積為,

,

再令,則單調(diào)遞增,

所以時(shí),

此時(shí)取得最小值,所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的上頂點(diǎn)為A,右焦點(diǎn)為F,O是坐標(biāo)原點(diǎn),是等腰直角三角形,且周長(zhǎng)為.

1)求橢圓的方程;

2)若直線lAF垂直,且交橢圓于BC兩點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為,短軸的兩個(gè)端點(diǎn)分別為.

(Ⅰ)若為等邊三角形,求橢圓的方程;

(Ⅱ)若橢圓的短軸長(zhǎng)為,過點(diǎn)的直線與橢圓相交于兩點(diǎn),且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠有4臺(tái)大型機(jī)器,在一個(gè)月中,一臺(tái)機(jī)器至多出現(xiàn)1次故障,且每臺(tái)機(jī)器是否出現(xiàn)故障是相互獨(dú)立的,出現(xiàn)故障時(shí)需1名工人進(jìn)行維修,每臺(tái)機(jī)器出現(xiàn)故障需要維修的概率為

1)問該廠至少有多少名維修工人才能保證每臺(tái)機(jī)器在任何時(shí)刻同時(shí)出現(xiàn)故障時(shí)能及時(shí)進(jìn)行維修的概率不小于?

2)已知1名工人每月只有維修1臺(tái)機(jī)器的能力,每月需支付給每位工人1萬元的工資,每臺(tái)機(jī)器不出現(xiàn)故障或出現(xiàn)故障能及時(shí)維修,能使該廠產(chǎn)生5萬元的利潤(rùn),否則將不產(chǎn)生利潤(rùn).若該廠現(xiàn)有2名工人,求該廠每月獲利的均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)有兩個(gè)零點(diǎn).

1)求的取值范圍;

2)記的極值點(diǎn)為,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),(其中),其部分圖像如圖所示.

1)求函數(shù)的解析式;

2)已知橫坐標(biāo)分別為、的三點(diǎn)都在函數(shù)的圖像上,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)判斷函數(shù)的奇偶性,并說明理由;

2)已知不等式上恒成立,求實(shí)數(shù)的最大值;

3)當(dāng)時(shí),求函數(shù)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體中,點(diǎn)是四邊形的中心,關(guān)于直線,下列說法正確的是( )

A. B.

C. 平面D. 平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為常數(shù)).

1)討論函數(shù)的單調(diào)性;

2)若函數(shù)內(nèi)有極值,試比較的大小,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案