直線kx-y+6=0被圓x2+y2=25截得的弦長為8,求k的值.
考點:直線和圓的方程的應用
專題:計算題,直線與圓
分析:利用垂徑定理及勾股定理即可求出弦長,利用點到直線的距離公式求出圓心到直線的距離d,從而可得結論.
解答: 解:∵直線kx-y+6=0被圓x2+y2=25截得的弦長為8,
∴弦心距為
52-42
=3.
|k•0-0+6|
1+k2
=3,
解得k=±
3
點評:此題考查了直線與圓相交的性質,涉及的知識有:圓的標準方程,點到直線的距離公式,垂徑定理及勾股定理,熟練掌握定理及公式是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,直線x-y=0與曲線y=x2-2x所圍成的面積為(  )
A、1
B、
5
2
C、
9
2
D、9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C:(x-2)2+(y+1)2=3,從點P(-1,-3)發(fā)出的光線,經(jīng)x軸反射后恰好經(jīng)過圓心C,則入射光線的斜率為(  )
A、-
4
3
B、-
2
3
C、
4
3
D、
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=x3lnx+x,f(x)與g(x)的圖象有交點(1,1),若g′(x)=x2lnx3-2x2,求f′(e)+g(e)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=cos2x+2
3
sinxcosx(x∈R)的最大值為M,最小正周期為T.
(1)求M,T的值.
(2)20個互不相等的正數(shù)xi滿足f(xi)=
3
2
M,且xi<10π(i=1,2,…,20),求x1+x2+…+x20的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C1和拋物線C2有公共焦點F(1,0),C1的中心和C2的頂點都在坐標原點,過點M(4,0)的直線l與拋物線C2分別相交于A,B兩點.
(1)如圖所示,若
AM
=
1
4
MB
,求直線l的方程;
(2)若坐標原點O關于直線l的對稱點P在拋物線C2上,直線l與橢圓C1有公共點,求橢圓C1的長軸長的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}的首項a1=a,an+an+1=3n-54,n∈N*
(1)求數(shù)列{an}的通項公式;
(3)設{an}的前n項和為Sn,若Sn的最小值為-243,求a的取值范圍?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,⊙O為四邊形ABCD的外接圓,且AB=AD,E是CB延長線上一點,直線EA與圓O相切.求證:
CD
AB
=
AB
BE

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<
π
2
)的圖象相鄰的兩條對稱軸之間的距離為
π
2
,其中的一個對稱中心是(
π
3
,0)且函數(shù)的一個最小值為-2.
(1)求函數(shù)f(x)的解析式,并求當x∈[0,
π
6
]時f(x)的值域;
(2)若函數(shù)f(x)在區(qū)間(
π
12
,b)上有唯一的零點,求實數(shù)b的最大值.

查看答案和解析>>

同步練習冊答案