已知奇函數(shù)f(x)是定義在(-3,3)上的減函數(shù),且f(m-1)+f(3m-1)>0,則實(shí)數(shù)m的取值范圍是
(-
2
3
,
1
2
(-
2
3
,
1
2
分析:根據(jù)奇函數(shù)性質(zhì)可把f(m-1)+f(3m-1)>0化為f(m-1)>-f(3m-1)=f(1-3m),再根據(jù)f(x)的單調(diào)性可去掉符號(hào)“f”化為一次不等式,注意考慮函數(shù)定義域.
解答:解:∵f(x)為奇函數(shù),
∴f(m-1)+f(3m-1)>0化為f(m-1)>-f(3m-1)=f(1-3m),
又f(x)在(-3,3)上為減函數(shù),
m-1<1-3m
-3<m-1<3
-3<3m-1<3
,解得-
2
3
<m<
1
2
,
故答案為:(-
2
3
1
2
)
點(diǎn)評(píng):本題考查函數(shù)的奇偶性、單調(diào)性及其應(yīng)用,考查抽象不等式的求解,屬基礎(chǔ)題,解決本題的關(guān)鍵是利用函數(shù)的性質(zhì)把抽象不等式化為具體不等式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知奇函數(shù)f(x)是定義在(-1,1)上的增函數(shù),如果f(1-a)+f(1-a2)<0,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

15、已知奇函數(shù)f(x)是定義在R上的增函數(shù),數(shù)列xn是一個(gè)公差為2的等差數(shù)列,滿足f(x8)+f(x9)+f(x10)+f(x11)=0,則x2011的值等于
4003

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知奇函數(shù)f(x)是定義在[-1,1]上的增函數(shù),則不等式f(x-1)+f(1-x2)<0的解集為
(1,
2
]
(1,
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知奇函數(shù)f(x)是定義在[-1,1]上的增函數(shù),且f(x-1)+f(3x-2)<0,則x的取值范圍為
1
3
≤x<
3
4
1
3
≤x<
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知奇函數(shù)f(x)是定義在R上的增函數(shù),且f(x-1)+f(3x-1)<0,則x的取值范圍為
x<
1
2
x<
1
2

查看答案和解析>>

同步練習(xí)冊(cè)答案