已知f(x)=ex-e-x-2x.
(Ⅰ)證明:f(x)是奇函數(shù);
(Ⅱ)設(shè)g(x)=f(x)+e-x,求g(x)在[0,2]上的最值.
考點(diǎn):利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,函數(shù)奇偶性的判斷
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(Ⅰ)由奇函數(shù)的定義判斷即可;
(Ⅱ)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,進(jìn)而可求得函數(shù)的最值.
解答: (Ⅰ)證明:∵f(x)=ex-e-x-2x.
∴函數(shù)的定義域?yàn)镽,
又∵f(-x)=-ex+e-x+2x=-(ex-e-x-2x)=-f(x).
∴函數(shù)f(x)=ex-e-x-2x是奇函數(shù).
(Ⅱ)解:∵g(x)=f(x)+e-x=ex-2x,
∴g′(x)=ex-2,
∴當(dāng)x∈[0,ln2]時(shí),g′(x)<0,當(dāng)x∈(ln2,2]時(shí),g′(x)>0,
又g(0)=1,g(ln2)=2-2ln2,g(2)=e2-4,
∴g(x)min=g(ln2)=2-2ln2,g(x)max=g(2)=e2-4.
點(diǎn)評(píng):本題主要考查函數(shù)的奇函數(shù)的判斷及利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,求函數(shù)最值等知識(shí),屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算:
lim
n→∞
1
n3+1
+
2
n3+2
+…+
n
n3+n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}的前n項(xiàng)和為Sn,a2=3,若Sn=λan-
1
2
,且{an}為遞增數(shù)列,則λ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={(x,y)|0≤y≤
4-x2
,且x+y-2≤0},
(Ⅰ)在坐標(biāo)平面內(nèi)作出集合M所表示的平面區(qū)域;
(Ⅱ)若點(diǎn)P(x,y)∈M,求
y-3
3+x
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x∈R,則
|12cosx-5sinx+39|
13
的最大值是( 。
A、2B、4C、13D、39

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的不等式|x+1|≥2|x|+a有實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=alnx+bx(a,b∈R),曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為x-2y-2=0.
(1)求f(x)的解析式;
(2)當(dāng)x>1時(shí),f(x)+
k
x
<0恒成立,求實(shí)數(shù)k的取值范圍;
(3)設(shè)n是正整數(shù),用n!表示前n個(gè)正整數(shù)的積,即n!=1•2•3…n.求證:n!<e 
n(n+1)
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=-x2+bx((b為常數(shù))滿足條件:方程f(x)=2x有兩個(gè)相等的實(shí)數(shù)根.
(1)求f(x)的解析式;
(2)是否存在實(shí)數(shù)m,n(m<n),使f(x)的定義域和值域分別為[m,n]和[4m,4n]?如果存在,請(qǐng)求出來.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知O是坐標(biāo)原點(diǎn),點(diǎn)A(-1,0),若M(x,y)為平面區(qū)域
x+y≥2
x≤1
y≤2
上的一個(gè)動(dòng)點(diǎn),則 |
OA
+
OM
|的取值范圍是( 。
A、[1,
5
]
B、[2,
5
]
C、[1,2]
D、[0,
5
]

查看答案和解析>>

同步練習(xí)冊答案