如果
a
1+i
=1+bi
(a,b∈R,i表示虛數(shù)單位),那么a+b=( �。�
A.0B.-3C.1D.3
a
1+i
=1+bi
a(1-i)
(1+i)(1-i)
=1+bi

a-ai=2+2bi  可得a=2,b=-1
a+b=1
故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如果
a
1+i
=1+bi
(a,b∈R,i表示虛數(shù)單位),那么a+b=( �。�
A、0B、-3C、1D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出以下四個命題:
①設(shè)a是實數(shù),i是虛數(shù)單位,若
a
1+i
+
1+i
2
是實數(shù),則a=1;
②不等|x-1|+|x-2|≤2的解集為[
1
2
,
5
2
]
;
e
1
(ex-
2
x
)dx=ee-e-2

④已知命題p:在△ABC中,如果cos2A=cos2B,則A=B;命題q:y=
1
x
在定義城內(nèi)是減函數(shù),則“p∧q”為真,“p∧q”為假,“¬p”為真.
其中正確命題的序號是
 
.(請把正確的序號全部填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果有窮數(shù)列a1a2,…,an(n∈N*)滿足條件:a1=an,a2=an-1,…,an=a1,即ai=an-i+1,(i=1,2,…,n)我們稱其為“對稱數(shù)列”.例如:數(shù)列1,2,3,3,2,1 和數(shù)列1,2,3,4,3,2,1都為“對稱數(shù)列”.已知數(shù)列{bn}是項數(shù)不超過2m(m>1,m∈N*)的“對稱數(shù)列”,并使得1,2,22,…,2m-1依次為該數(shù)列中連續(xù)的前m項,則數(shù)列{bn}的前2009項和S2009所有可能的取值的序號為( �。�
①22009-1   ②2(22009-1)③3•2m-1-22m-2010-1   ④2m+1-22m-2009-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東城區(qū)一模)設(shè)A是由n個有序?qū)崝?shù)構(gòu)成的一個數(shù)組,記作:A=(a1,a2,…,ai,…,an).其中ai(i=1,2,…,n)稱為數(shù)組A的“元”,S稱為A的下標(biāo).如果數(shù)組S中的每個“元”都是來自 數(shù)組A中不同下標(biāo)的“元”,則稱A=(a1,a2,…,an)為B=(b1,b2,…bn)的子數(shù)組.定義兩個數(shù)組A=(a1,a2,…,an),B=(b1,b2,…,bn)的關(guān)系數(shù)為C(A,B)=a1b1+a2b2+…+anbn
(Ⅰ)若A=(-
1
2
,
1
2
)
,B=(-1,1,2,3),設(shè)S是B的含有兩個“元”的子數(shù)組,求C(A,S)的最大值;
(Ⅱ)若A=(
3
3
,
3
3
,
3
3
)
,B=(0,a,b,c),且a2+b2+c2=1,S為B的含有三個“元”的子數(shù)組,求C(A,S)的最大值;
(Ⅲ)若數(shù)組A=(a1,a2,a3)中的“元”滿足a12+a22+a32=1.設(shè)數(shù)組Bm(m=1,2,3,…,n)含有四個“元”bm1,bm2,bm3,bm4,且bm12+bm22+bm32+bm42=m,求A與Bm的所有含有三個“元”的子數(shù)組的關(guān)系數(shù)C(A,Bm)(m=1,2,3,…,n)的最大值.

查看答案和解析>>

同步練習(xí)冊答案