精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=
x+1-a
a-x
(a∈R且x≠a)

(1)當f(x)的定義域為[a+
1
3
,  a+
1
2
]
時,求f(x)的值域;
(2)求f(-3a)+f(-2a)+f(-a)+f(0)+f(2a)+f(3a)+f(4a)+f(5a)的值;
(3)設函數g(x)=x2+|(x-a)•f(x)|,求g(x) 的最小值.
分析:(1)先判斷函數在[a+
1
3
, a+
1
2
]
上為增函數,從而可求函數的值域;
(2)根據解析式,可先求得f(-3a)+f(5a)=-2;f(-2a)+f(4a)=-2;f(-a)+f(3a)=-2;f(0)+f(2a)=-2,從而得解;
(3)考慮將絕對值符合去掉,再利用二次函數求最值的方法進行分類討論.
解答:解:(1)由題意,f(x)=-1+
1
a-x
(a∈R且x≠a)
,故可知函數在[a+
1
3
, a+
1
2
]
上為增函數
∴f(x)的值域為[-4,-3];
(2)f(-3a)+f(5a)=-2;f(-2a)+f(4a)=-2;f(-a)+f(3a)=-2;f(0)+f(2a)=-2
∴f(-3a)+f(-2a)+f(-a)+f(0)+f(2a)+f(3a)+f(4a)+f(5a)=-8
(3)g(x)=x2+|(x-a)•f(x)|=x2+|x-a+1|,
①當 x≥a-1時,g(x)=x2+x-a+1,
1)當a-1≤-
1
2
時,g(x)min=g(-
1
2
)=
3
4
-a

2)當a-1>-
1
2
時,g(x)min=g(a-1)=a2-2a+1
②當 x≤a-1時,g(x)=x2-x+a-1,
1)當a-1≤
1
2
時,g(x)min=g(
1
2
)=
7
4
-a

2)當a-1
1
2
時,g(x)min=g(a-1)=a2-2a+1
點評:本題以函數為載體,考查函數的性質,考查二次函數的值域,最值問題,關鍵是考慮對稱軸與區(qū)間的關系,正確分類.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=x-2m2+m+3(m∈Z)為偶函數,且f(3)<f(5).
(1)求m的值,并確定f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在實數a,使g(x)在區(qū)間[2,3]上的最大值為2,若存在,請求出a的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•上海模擬)已知函數f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數學 來源:浙江省東陽中學高三10月階段性考試數學理科試題 題型:022

已知函數f(x)的圖像在[a,b]上連續(xù)不斷,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函數f(x)在D上的最小值,max{f(x)|x∈D}表示函數f(x)在D上的最大值,若存在最小正整數k,使得f2(x)-f1(x)≤k(x-a)對任意的x∈[a,b]成立,則稱函數f(x)為[a,b]上的“k階收縮函數”.已知函數f(x)=x2,x∈[-1,4]為[-1,4]上的“k階收縮函數”,則k的值是_________.

查看答案和解析>>

科目:高中數學 來源:上海模擬 題型:解答題

已知函數f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數學 來源:2009-2010學年河南省許昌市長葛三高高三第七次考試數學試卷(理科)(解析版) 題型:選擇題

已知函數f(x)、g(x),下列說法正確的是( )
A.f(x)是奇函數,g(x)是奇函數,則f(x)+g(x)是奇函數
B.f(x)是偶函數,g(x)是偶函數,則f(x)+g(x)是偶函數
C.f(x)是奇函數,g(x)是偶函數,則f(x)+g(x)一定是奇函數或偶函數
D.f(x)是奇函數,g(x)是偶函數,則f(x)+g(x)可以是奇函數或偶函數

查看答案和解析>>

同步練習冊答案