點A、B分別是以雙曲線的焦點為頂點,頂點為焦點的橢圓C長軸的左、右端點,點F是橢圓的右焦點,點P在橢圓C上,且位于x軸上方,

(1)求橢圓C的的方程;(2)求點P的坐標.

解(1)已知雙曲線實半軸a1=4,虛半軸b1=2,半焦距c1=

∴橢圓的長半軸a2=c1=6,橢圓的半焦距c2=a1=4,

橢圓的短半軸=,

∴所求的橢圓方程為     

(2)由已知,,設點P的坐標為,則

由已知得

      

,解之得

由于y>0,所以只能取,于是,所以點P的坐標為…10分

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2014屆遼寧省分校高二12月月考理科數(shù)學試題(解析版) 題型:解答題

點A、B分別是以雙曲線的焦點為頂點,頂點為焦點的橢圓C長軸的左、右端點,點F是橢圓的右焦點,點P在橢圓C上,且位于x軸上方, 

(1)求橢圓C的的方程;

(2)求點P的坐標;

(3)設M是橢圓長軸AB上的一點,點M到直線AP的距離等于|MB|,求橢圓上的點到M的距離d的最小值。

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

點A、B分別是以雙曲線數(shù)學公式數(shù)學公式的焦點為頂點,頂點為焦點的橢圓C長軸的左、右端點,點F是橢圓的右焦點,點P在橢圓C上,且位于x軸上方,數(shù)學公式
(I)求橢圓C的方程;
(II)求點P的坐標;
(III)設M是橢圓長軸AB上的一點,點M到直線AP的距離等于|MB|,求橢圓上的點到M的距離d的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年山東省濟寧市金鄉(xiāng)一中高二(上)12月月考數(shù)學試卷(理科)(解析版) 題型:解答題

點A、B分別是以雙曲線的焦點為頂點,頂點為焦點的橢圓C長軸的左、右端點,點F是橢圓的右焦點,點P在橢圓C上,且位于x軸上方,
(I)求橢圓C的方程;
(II)求點P的坐標;
(III)設M是橢圓長軸AB上的一點,點M到直線AP的距離等于|MB|,求橢圓上的點到M的距離d的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年福建省泉州市泉港五中高二(上)期中數(shù)學試卷(解析版) 題型:解答題

點A、B分別是以雙曲線的焦點為頂點,頂點為焦點的橢圓C長軸的左、右端點,點F是橢圓的右焦點,點P在橢圓C上,且位于x軸上方,
(I)求橢圓C的方程;
(II)求點P的坐標;
(III)設M是橢圓長軸AB上的一點,點M到直線AP的距離等于|MB|,求橢圓上的點到M的距離d的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年重慶市渝東片區(qū)部分重點中學高三(下)第一次檢測數(shù)學試卷(理科)(解析版) 題型:解答題

點A、B分別是以雙曲線的焦點為頂點,頂點為焦點的橢圓C長軸的左、右端點,點F是橢圓的右焦點,點P在橢圓C上,且位于x軸上方,
(I)求橢圓C的方程;
(II)求點P的坐標;
(III)設M是橢圓長軸AB上的一點,點M到直線AP的距離等于|MB|,求橢圓上的點到M的距離d的最小值.

查看答案和解析>>

同步練習冊答案