A. | $\frac{{2\sqrt{2}+\sqrt{3}}}{6}$ | B. | $\frac{{2\sqrt{2}-\sqrt{3}}}{6}$ | C. | $\frac{{\sqrt{2}+2\sqrt{3}}}{6}$ | D. | $\frac{{\sqrt{2}-2\sqrt{3}}}{6}$ |
分析 首先化簡(jiǎn)函數(shù)f(x),根據(jù)f($\frac{C}{2}$)=-$\frac{1}{4}$求出角C的正弦值,進(jìn)而求出角C的大;然后求出角B的正弦、余弦,最后根據(jù)兩角和的正弦公式,求出sinA的值即可.
解答 解:f(x)=cos(2x+$\frac{π}{3}$)+sin2x=$\frac{1}{2}$cos2x-$\frac{\sqrt{3}}{2}$sin2x+$\frac{1-cos2x}{2}$=$\frac{1}{2}$-$\frac{\sqrt{3}}{2}$sin2x,
∴f($\frac{C}{2}$)=$\frac{1}{2}$-$\frac{\sqrt{3}}{2}$sinC=-$\frac{1}{4}$,
∴sinC=$\frac{\sqrt{3}}{2}$
∵C為銳角,C=$\frac{π}{3}$,
因?yàn)樵凇鰽BC 中,cosB=$\frac{1}{3}$,所以sinB=$\frac{2\sqrt{2}}{3}$,
所以sinA=sin(B+C)=sinBcosC+cosBsinC=$\frac{2\sqrt{2}+\sqrt{3}}{6}$.
故選:A.
點(diǎn)評(píng) 本題主要考查了三角函數(shù)的最值以及最小正周期的求法,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=x2 | B. | y=x|x| | C. | y=-x3 | D. | y=x+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | h=-8sin($\frac{π}{6}$t)+10 | B. | h=-8cos($\frac{π}{3}$t)+10 | C. | h=8cos($\frac{π}{6}$t)+10 | D. | h=-8cos($\frac{π}{6}$t)+10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\frac{1}{2}$ | C. | -$\frac{1}{2}$ | D. | -2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com