.在正四面體ABCD中,EF分別是BC、AD中點(diǎn),則異面直線AECF所成角的余弦值是________.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

有六根細(xì)木棒,其中較長(zhǎng)的兩根分別為aa,其余四根均為a,用它們搭成三棱錐,則其中兩條較長(zhǎng)的棱所在的直線的夾角的余弦值為
A.0B.C.0或D.以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.如圖,四棱錐S-ABCD的底面是正方形,每條側(cè)棱的長(zhǎng)都是地面邊長(zhǎng)的倍,P為側(cè)棱SD上的點(diǎn)。
(1)求證:AC⊥SD;
(2)若SD⊥平面PAC,求二面角P-AC-D的大小
(3)在(2)的條件下,側(cè)棱SC上是否存在一點(diǎn)E,使得BE∥平面PAC。若存在,求SE:EC的值;若不存在,試說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)如圖,在四棱錐中,底面,
,的中點(diǎn).
(Ⅰ)求和平面所成的角的大;
(Ⅱ)證明平面
(Ⅲ)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如左圖已知異面線段, 線段中點(diǎn)的為,且,則異面線段所在直線所成的角為( )                                                 
A            B           C.            D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(16分)如圖,在底面是直角梯形的四棱錐P—ABCD中,AD∥BC,∠DAB=90º,PA⊥平面ABCD,PA=AB=BC=1,AD=2,M是PD的中點(diǎn)。
(1)求證:MC∥平面PAB;
(2)在棱PD上求一點(diǎn)Q,使二面角Q—AC—D的正切值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(本小題滿分15分)
如圖,已知平行四邊形ABCD中,,垂足為E,沿直線AE將△BAE翻折成△B’AE,使得平面B’AE ⊥平面AECD.連接B’D,PB’D上的點(diǎn).
(Ⅰ)當(dāng)B’P=PD時(shí),求證:CP⊥平面AB’D
(Ⅱ)當(dāng)B’P=2PD時(shí),求二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐的底面為直角梯形,,,,平面
(1)在線段上是否存在一點(diǎn),使平面平面,如果存在,說明E點(diǎn)位置;如果不存在,說明理由.
(2)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案