7.若關(guān)于x的不等式$\frac{(k-1){x}^{2}+(k-1)x+2}{{x}^{2}+x+1}$>0的解集為R,則k的范圍為[1,9).

分析 關(guān)于x的不等式$\frac{(k-1){x}^{2}+(k-1)x+2}{{x}^{2}+x+1}$>0的解集為R,x2+x+1=$(x+\frac{1}{2})^{2}$+$\frac{3}{4}$>0,轉(zhuǎn)化為(k-1)x2+(k-1)x+2>0的解集為R.對k分類討論,利用一元二次不等式的解集與判別式的關(guān)系即可得出.

解答 解:∵關(guān)于x的不等式$\frac{(k-1){x}^{2}+(k-1)x+2}{{x}^{2}+x+1}$>0的解集為R,x2+x+1=$(x+\frac{1}{2})^{2}$+$\frac{3}{4}$>0,
∴(k-1)x2+(k-1)x+2>0的解集為R.
當(dāng)k=1時(shí),2>0恒成立,因此k=1滿足條件.
當(dāng)k≠0時(shí),可得$\left\{\begin{array}{l}{k-1>0}\\{△=(k-1)^{2}-8(k-1)<0}\end{array}\right.$,解得1<k<9,
綜上可得:k的范圍為[1,9).
故答案為:[1,9).

點(diǎn)評 本題考查了恒成立問題等價(jià)轉(zhuǎn)化方法、“三個(gè)二次的關(guān)系”、不等式的解集與判別式的關(guān)系,考查了分類討論方法、推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知向量$\overrightarrow{a}$=(2cos2x,$\sqrt{3}$),$\overrightarrow$=(1,sin2x).設(shè)f(x)=$\overrightarrow{a}$•$\overrightarrow$,若f(α-$\frac{π}{3}$)=2,α∈[$\frac{π}{2}$,π],則sin(2α-$\frac{π}{6}$)=( 。
A.-$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.-$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.表示正整數(shù)集的是( 。
A.QB.NC.N*D.Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知中心在原點(diǎn)的橢圓C的兩個(gè)焦點(diǎn)和橢圓C1:2x2+3y2=72的兩個(gè)焦點(diǎn)是一個(gè)正方形的四個(gè)頂點(diǎn),且橢圓C過點(diǎn)A(${\sqrt{3}$,-2).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知P是橢圓C上的任意一點(diǎn),Q(0,t),求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知x<0,-1<y<0,用不等號將x,xy,xy2從大到小排列得xy>xy2>x .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)全集U=R.
(1)解關(guān)于x的不等式|x-1|+a-1>0(a∈R);
(2)記A為(1)中不等式的解集,B為不等式組$\left\{\begin{array}{l}{\frac{3x-5}{x+4}≤1}\\{{x}^{2}-x+1≥0}\end{array}\right.$的整數(shù)解集,若(∁UA)∩B恰有三個(gè)元素,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.(1)已知$\sqrt{a}$+$\frac{1}{\sqrt{a}}$=3,求$\frac{({a}^{2}+\frac{1}{{a}^{2}}+3)}{\root{4}{a}+\frac{1}{\root{4}{a}}}$的值;
(2)計(jì)算[(1-log63)2+log62×log618]•log46.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.O為坐標(biāo)原點(diǎn),F(xiàn)為拋物線C:y2=4$\sqrt{2}$x的焦點(diǎn),P為C上一點(diǎn),若|PF|=3$\sqrt{2}$,則△POF的面積( 。
A.2B.2$\sqrt{2}$C.2$\sqrt{3}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{an}中,a1=3,a2=5,{an}的前n項(xiàng)和Sn,且滿足Sn+Sn-2=2Sn-1+2n-1(n≥3).
(1)試求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=$\frac{{2}^{n-1}}{{a}_{n}•{a}_{n+1}}$,Tn是數(shù)列{bn}的前n項(xiàng)和,證明:Tn<$\frac{1}{6}$;
(3)證明:對任意給定的m∈(0,$\frac{1}{6}$),均存在n0∈N+,使得當(dāng)n≥n0時(shí),(2)中的Tn>m恒成立.

查看答案和解析>>

同步練習(xí)冊答案