已知雙曲線的中心在原點,對稱軸為坐標(biāo)軸,且經(jīng)過點(2,
2
)與(
2
,0),則雙曲線的焦點坐標(biāo)為
 
分析:先設(shè)出雙曲線的標(biāo)準(zhǔn)方程,根據(jù)點(
2
,0)確定a,再把點(2,
2
)代入雙曲線方程求得b,雙曲線方程可得.最后根據(jù)雙曲線性質(zhì)求得雙曲線的焦點坐標(biāo).
解答:解:由題意知設(shè)雙曲線的方程為
x2
a2
-
y2
b2
=1
(a>0,b>0)且a2=2,
又過點(2,
2
)得x2-y2=2,則雙曲線的焦點坐標(biāo)為(±2,0).
點評:本題主要考查了雙曲線的標(biāo)準(zhǔn)方程和雙曲線的簡單性質(zhì).屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的中心在原點,焦點F1,F(xiàn)2在坐標(biāo)軸上,離心率為
2
,且過點(4,-
10
)
,則雙曲線的標(biāo)準(zhǔn)方程是
x2-y2=6
x2-y2=6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的中心在原點,焦點為F1(5,0),F(xiàn)2(-5,0),且過點(3,0),
(1)求雙曲線的標(biāo)準(zhǔn)方程.
(2)求雙曲線的離心率及準(zhǔn)線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的中心在原點,焦點F1,F(xiàn)2在坐標(biāo)軸上,一條漸近線方程為y=x,且過點(4,-
10
)

(1)求雙曲線方程;
(2)設(shè)A點坐標(biāo)為(0,2),求雙曲線上距點A最近的點P的坐標(biāo)及相應(yīng)的距離|PA|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的中心在原點,焦點F1,F(xiàn)2在坐標(biāo)軸上,一條漸近線方程為y=x,且過點(4,-
10
)
,A點坐標(biāo)為(0,2),則雙曲線上距點A距離最短的點的坐標(biāo)是
7
,1)
7
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•豐臺區(qū)一模)已知雙曲線的中心在原點,焦點在x軸上,一條漸近線方程為y=
3
4
x
,則該雙曲線的離心率是
5
4
5
4

查看答案和解析>>

同步練習(xí)冊答案