分析 (1)分類討論,結(jié)合二次函數(shù)的性質(zhì),即可求實數(shù)a的取值范圍;
(2)將f(x)>0分離參變量轉(zhuǎn)化為最值問題.
解答 解:(1)a=0時,f(x)=-2x+1,符合題意;
a≠0時,函數(shù)的對稱軸為x=$\frac{1}{a}$,
a<0時,函數(shù)y=f(x)在x∈[1,2]上是減函數(shù),$\frac{1}{a}$≤1,∴a<0;
a>0時,函數(shù)y=f(x)在x∈[1,2]上是減函數(shù),$\frac{1}{a}$≥2,∴0<a≤$\frac{1}{2}$,
綜上所述,a≤$\frac{1}{2}$;
(2)當(dāng)x∈[1,2]時,ax2-2x+1>0恒成立,可以化為:a>-$\frac{1}{{x}^{2}}$+$\frac{2}{x}$=-$(\frac{1}{x}-1)^{2}$+1恒成立,
又-$(\frac{1}{x}-1)^{2}$+1在x∈[1,2]上的最大值為1,所以a>1.
點評 本題以求范圍為載體討論了函數(shù)的恒成立與函數(shù)的單調(diào)性問題,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0個 | B. | 1個 | C. | 2個 | D. | 3個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{66}}}{11}$ | B. | $\frac{{2\sqrt{22}}}{11}$ | C. | $\frac{{\sqrt{6}}}{3}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題“若x2-1=0,則x=1”的逆否命題為“若x≠1,則x2-1≠0” | |
B. | “x=1”是“x2-3x+2=0”的充分不必要條件 | |
C. | 若集合A={x|kx2+4x+4=0}中只有一個元素,則k=1 | |
D. | 對于命題p:?x∈R,使得x2+x+1<0,則?p:?x∈R,均有x2+x+1≥0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p:0∈N,q:若A∪B=A,則A⊆B | |
B. | p:若b2=ac,則a,b,c成等比數(shù)列;q:y=cosx在$[\frac{π}{2},\frac{3π}{2}]$上是減函數(shù) | |
C. | p:若$\overrightarrow a•\overrightarrow b>0$,則$\overrightarrow a$與$\overrightarrow b$的夾角為銳角;q:當(dāng)a<-1時,不等式a2x2-2x+1>0恒成立 | |
D. | p:在極坐標(biāo)系中,圓$ρ=2cos(θ-\frac{π}{4})$的圓心的極坐標(biāo)是$(1,-\frac{π}{4})$;q:拋物線y=4x2的焦點坐標(biāo)是(0,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1+i | B. | 1-i | C. | -1+i | D. | -1-i |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com