已知點P(m,n)是直線2x+y+5=0上的任意一點,則4m2+n2的最小值為( 。
A、2
5
B、10
C、
25
2
D、
5
2
2
考點:二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由題意可得n=-2m-5,代入可得4m2+n2=8m2+20m+25,由二次函數(shù)知識可得.
解答: 解:∵點P(m,n)是直線2x+y+5=0上的任意一點,
∴2m+n+5=0,∴n=-2m-5,
∴4m2+n2=4m2+(-2m-5)2
=8m2+20m+25,
由二次函數(shù)可知當(dāng)m=-
20
2×8
=-
5
4
時,上式取最小值
25
2
點評:本題考查二次函數(shù)的最值,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a2-a>0,函數(shù)y=a|x|(a>0,a≠1)的圖象形狀大致是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(x,y)滿足不等式
2x-3y+2≥0
3x-y-4≤0
x+2y+1≥0
,z=x+ay,當(dāng)且僅當(dāng)在點(2,2)取得最大值,則實數(shù)a的取值范圍是( 。
A、(-∞,-
1
3
B、(-
1
2
,-
1
3
C、(-
1
2
,+∞)
D、(-
1
3
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若二次函數(shù)f(x)的圖象經(jīng)過點(0,0),且f(x+1)=f(x)+x+1,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sin(ωx+
π
4
)(ω>0)的最小正周期是π,下面是函數(shù)f(x)對稱軸的是( 。
A、π=π
B、x=
π
2
C、x=
π
4
D、x=
π
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,A=60°,b=1,c=2,求
a+b+c
sinA+sinB+sinC
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在△ABC中,a、b、c分別是∠A、∠B、∠C的對邊長,若
a2+b2-c2
2ab
<0,則△ABC的形狀為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點P(x,y)是圓x2+y2=1上任意一點,則x2+(y-1)2的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l垂直于直線3x+4y-2=0,且與兩個坐標軸構(gòu)成的三角形周長為5個單位長度,直線l的方程為
 

查看答案和解析>>

同步練習(xí)冊答案