已知函數(shù),其中

(1)若是函數(shù)的極值點(diǎn),求實(shí)數(shù)的值;

(2)若對任意的為自然對數(shù)的底數(shù))都有成立,求實(shí)數(shù)的取值范圍.

【解析】(1)根據(jù)建立關(guān)于a的方程求a即可.

(2)本題要分別求出f(x)在[1,e]上的最小值,g(x)在[1,e]上的最大值,然后

,解關(guān)于a的不等式即可.

 

【答案】

,其定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052522132555243943/SYS201205252215000974165930_DA.files/image002.png">,  

.                                  1分

是函數(shù)的極值點(diǎn),∴,               2分

.                                           3分

,∴.                                    4分

(2) 對任意的都有成立等價于對任意的

都有.                            5分

當(dāng)[1,]時,

∴函數(shù)上是增函數(shù).

.                              6分

,且,

①當(dāng)[1,]時,,

∴函數(shù)在[1,]上是增函數(shù),

.       7分

,得,又,∴不合題意.

②當(dāng)1≤時,若1≤,則,

,則

∴函數(shù)上是減函數(shù),在上是增函數(shù).

.          

,得,又1≤,∴.            8分          

③當(dāng)[1,]時,,

∴函數(shù)上是減函數(shù).∴.     

,得,又,∴.         9分

綜上所述,的取值范圍為

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=·,其中=(sinωx+cosωx,cosωx), =(cosωx-sinωx,2sinωx)(ω>0).若f(x)相鄰兩對稱軸間的距離不小于.

(1)求ω的取值范圍;

(2)在△ABC中,a、b、c分別是角A、B、C的對邊,a=,b+c=3(b>c),當(dāng)ω最大時,f(A)=1,求邊b,c的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省五校聯(lián)盟高三下學(xué)期第一次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知,函數(shù),,(其中e是自然對數(shù)的底數(shù),為常數(shù)),

(1)當(dāng)時,求的單調(diào)區(qū)間與極值;

(2)是否存在實(shí)數(shù),使得的最小值為3. 若存在,求出的值,若不存在,說明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省等三校高三2月月考數(shù)學(xué)文卷 題型:解答題

(本小題滿分14分)

已知函數(shù),.(其中為自然對數(shù)的底數(shù)),

(Ⅰ)設(shè)曲線處的切線與直線垂直,求的值;

(Ⅱ)若對于任意實(shí)數(shù)≥0,恒成立,試確定實(shí)數(shù)的取值范圍;

(Ⅲ)當(dāng)時,是否存在實(shí)數(shù),使曲線C:在點(diǎn)

處的切線與軸垂直?若存在,求出的值;若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年天津市高三十校聯(lián)考理科數(shù)學(xué) 題型:解答題

.(14分)已知函數(shù),,其中

(Ⅰ)若是函數(shù)的極值點(diǎn),求實(shí)數(shù)的值

(Ⅱ)若對任意的為自然對數(shù)的底數(shù))都有成立,求實(shí)數(shù)的取值范圍

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆云南省高一期末考試數(shù)學(xué)試卷 題型:解答題

已知函數(shù)(其中)的周期為π,且圖象上一個最低點(diǎn)為。

 (1)求的解析式;

(2)當(dāng)時,求的最值

 

查看答案和解析>>

同步練習(xí)冊答案