10.某車間為了制定工時定額,需要確定加工零件所花費的時間,為此做了四次試驗,得到的
零件的個數(shù)x(個)2345
加工的時間y(小時)2.5344.5
數(shù)據(jù)如下:
(1)在給定的坐標系中畫出表中數(shù)據(jù)的散點圖;
(2)求出y關于x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$,并在坐標系中畫出回歸直線;
(3)試預測加工10個零件需要多少小時?
(注:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$)

分析 (1)根據(jù)表中所給的數(shù)據(jù),可得散點圖;
(2)求出出橫標和縱標的平均數(shù),得到樣本中心點,求出對應的橫標和縱標的積的和,求出橫標的平方和,做出系數(shù)和a的值,寫出線性回歸方程.
(3)將x=10代入回歸直線方程,可得結論.

解答 解:(1)作出散點圖如下:
…(3分)
(2)$\overline{x}$=3.5,$\overline{y}$=3.5,…(5分)∧
$\sum_{i=1}^{4}$${{x}_{i}}^{2}$=54,$\sum_{i=1}^{4}$xiyi=52.5
∴$\stackrel{∧}$=$\frac{52.5-4×3.5×3.5}{54-4×3.{5}^{2}}$=0.7
$\stackrel{∧}{a}$=3.5-0.7×3.5=1.05,
∴所求線性回歸方程為:$\stackrel{∧}{y}$=0.7x+1.05…(10分)
(3)當x=10代入回歸直線方程,得$\stackrel{∧}{y}$=0.7×10+1.05=8.05(小時).
所以加工10個零件大約需要8.05個小時…(12分)

點評 本題考查線性回歸方程的求法和應用,考查學生的計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

20.已知等比數(shù)列{an}為遞增數(shù)列,滿足a4+a6=6,a2•a8=8,則a3=( 。
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.給出下列命題:
①命題“若x≠1,則x2-3x+2≠0”的逆否命題是“若x2-3x+2=0,則x≠1”;
②已知兩圓A:(x+1)2+y2=1,圓B:(x-1)2+y2=25,動圓M與圓A外切、與圓B內切,則動圓的圓心M的軌跡是橢圓;
③若向量$\overrightarrow b=({3,m})$在$\overrightarrow a=({1,\sqrt{3}})$方向上的投影為3,則實數(shù)$m=\sqrt{3}$;
④在數(shù)列{an}中,a1=1,Sn是其前n項和,且滿足${S_{n+1}}=\frac{1}{2}{S_n}+2$,則{an}是等比數(shù)列.
其中正確的命題序號是②③④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,AB∥CD,∠ADC=90°,PD=AD=AB=1,DC=2.
(1)求證:BC⊥平面PBD;
(2)求二面角A-PB-C的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知關于x的方程xln x=ax+1(a∈R),下列說法正確的是(  )
A.有兩不等根B.只有一正根C.無實數(shù)根D.不能確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.對于函數(shù)$y=sin(x+\frac{π}{8})cos(x+\frac{π}{8})$,以下四個結論中錯誤的是(  )
A.最小正周期為π
B.圖象可由$y=\frac{1}{2}sinx$先把圖象上各點的橫坐標變?yōu)樵瓉淼?\frac{1}{2}$倍(縱坐標不變),再把所得圖象向左平移$\frac{π}{8}$個單位長度而得到
C.圖象關于直線x=$\frac{5π}{8}$對稱
D.圖象關于點($\frac{π}{8}$,0)對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.如圖是一正方體的表面展開圖,MN和PB是兩條面對角線,則在正方體中,直線MN與直線PB的位置關系為異面.(從相交、平行、異面、重合中選填)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.在△ABC中,|AB|=3,|AC|=5,|BC|=6;點D是邊BC上的動點,$\overrightarrow{AD}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,當xy取最大值時,|$\overrightarrow{AD}$|的值為(  )
A.4B.3C.2$\sqrt{2}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.根據(jù)如下樣本數(shù)據(jù):
x234567
y3.42.5-0.20.5-2.0-3.0
得到的回歸方程為$\hat y=bx+a$,則( 。
A.a>0,b<0B.a>0,b>0C.a<0,b>0D.a<0,b<0

查看答案和解析>>

同步練習冊答案