10.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若sinA=$\sqrt{3}$sinB,c=6,B=30°.
(1)求b的值;
(2)求△ABC的面積.

分析 (1)由已知及正弦定理可得a=$\sqrt{3}b$,利用余弦定理可得b2-9b+18=0,從而可求b的值.
(2)由(1)可求b,a的值,分類討論利用三角形面積公式即可計(jì)算得解.

解答 解:(1)由正弦定理可得:$\frac{sinA}{sinB}=\frac{a}=\sqrt{3}$,可得:a=$\sqrt{3}b$,…2分
由余弦定理可得:b2=a2+c2-2accosB,即b2=3b2+36-2$\sqrt{3}$×$b×6×\frac{\sqrt{3}}{2}$,…4分
整理可得:b2-9b+18=0,解得:b=6或3…6分
(2)當(dāng)b=6時(shí),a=6$\sqrt{3}$,所以S=$\frac{1}{2}$acsinB=9$\sqrt{3}$…9分
當(dāng)b=3時(shí),a=3$\sqrt{3}$,所以S=$\frac{1}{2}$acsinB=$\frac{9\sqrt{3}}{2}$…12分

點(diǎn)評(píng) 本題主要考查了正弦定理,余弦定理,三角形面積公式在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.如圖所示,網(wǎng)格紙表示邊長(zhǎng)為1的正方形,粗實(shí)線畫(huà)出的是某幾何體的三視圖,則該幾何體的表面積為( 。
A.6$\sqrt{10}$+3$\sqrt{5}$+15B.6$\sqrt{10}$+3$\sqrt{5}$+14C.6$\sqrt{10}$+3$\sqrt{5}$+15D.4$\sqrt{10}$+3$\sqrt{5}$+15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若集合A={x|x2-2x<0},函數(shù)f(x)=$\sqrt{x-1}$的定義域?yàn)榧螧,則A∩B等于( 。
A.(0,1)B.[0,1)C.(1,2)D.[1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.某設(shè)備啟用后,使用年份x(年)和所需的維修費(fèi)用y(萬(wàn)元)有如下幾組統(tǒng)計(jì)數(shù)據(jù):
x23456
y2.23.85.56.57.0
(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;
(2)估計(jì)該設(shè)備啟用后第10年(即x=10)所需要的維修費(fèi)用大約是多少?
(參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}•{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.在下列均為正數(shù)的表格中,每行中的各數(shù)從左到右成等差數(shù)列,每列中的各數(shù)從上到下成等比數(shù)列,那么x+y+z=16.
1x3
ya6
48z

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),設(shè)F1,F(xiàn)2為其左、右焦點(diǎn),P在雙曲線右支上,半徑為b+$\frac{a}$的圓M為△PF1F2的內(nèi)切圓,若點(diǎn)M到直線y=$\frac{a}$x的距離為$\frac{1}{2}$,則雙曲線的離心率為(  )
A.$\frac{3\sqrt{6}}{6}$B.$\frac{3}{2}$C.$\frac{\sqrt{6}}{2}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知x,y滿足約束條件$\left\{\begin{array}{l}{x-2≤0}\\{y-1≤0}\\{x+2y-2≥0}\end{array}\right.$,則目標(biāo)函數(shù)z=y-x的取值范圍是( 。
A.[-2,-1]B.[-2,1]C.[-1,2]D.[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知等差數(shù)列{an}滿足a1=2,a2n-an=2n.
(1)求該數(shù)列的公差d和通項(xiàng)公式an;
(2)設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,若Sk=110,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)集合M={x|x2-5x-6>0},U=R,則∁UM=( 。
A.[2,3]B.(-∞,2]∪[3,+∞)C.[-1,6]D.[-6,1]

查看答案和解析>>

同步練習(xí)冊(cè)答案