17.已知函數(shù)f(x)=sinx+cosx,則f'(π)=-1.

分析 根據(jù)題意,對(duì)f(x)求導(dǎo)可得f′(x),將x=π代入計(jì)算可得答案.

解答 解:根據(jù)題意,函數(shù)f(x)=sinx+cosx,
其導(dǎo)數(shù)f′(x)=cosx-sinx,
則f'(π)=cosπ-sinπ=-1;
故答案為:-1.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的計(jì)算,關(guān)鍵是掌握導(dǎo)數(shù)的計(jì)算公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.向量$\overrightarrow a=({2,-1}),\overrightarrow b=({x,1})$,若$2\overrightarrow a+\overrightarrow b$與$\overrightarrow b$共線,則x=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=-$\frac{1}{2}a{x^2}+({1+a})x-lnx({a∈R})$.
(1)當(dāng)a>0時(shí),求函數(shù)f(x)的單調(diào)減區(qū)間;
(2)當(dāng)a=0時(shí),設(shè)函數(shù)g(x)=xf(x)若存在區(qū)間$[{m,n}]?[{\frac{1}{2},+∞})$,使得函數(shù)g(x)在[m,n]上的值域?yàn)閇k(m+2)-2,k(n+2)-2],求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.(1)化簡(jiǎn)f(α)=$\frac{{sin(\frac{π}{2}+α)+sin(-π-α)}}{{3cos(2π-α)+cos(\frac{3π}{2}-α)}}$; 
(2)若tanα=1,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知兩點(diǎn)M(2,-3),N(-3,-2),斜率為k的直線l過(guò)點(diǎn)P(1,1)且與線段MN相交,則k的取值范圍是(-∞,-4]∪[$\frac{3}{4}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.下列命題:
①命題“若x2-3x+2=0,則x=1”的逆否命題為:“若x≠1,則x2-3x+2≠0”
②“x=1”是“x2-3x+2=0”的充分不必要條件
③若p∧q為假命題,則p,q均為假命題
④對(duì)于命題p:?x∈R,使得x2+x+1<0,則¬p:?x∈R,均有x2+x+1≥0,
說(shuō)法錯(cuò)誤的是③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知△ABC中,A,B,C的對(duì)邊分別為a,b,c,若$a=\sqrt{10}$,c=3,$cosA=\frac{1}{4}$,則b=( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.下列表示中不正確的是(  )
A.終邊在x軸上角的集合是{α|α=kπ,k∈Z}
B.終邊在y軸上角的集合是$\{α|α=\frac{π}{2}+kπ,k∈Z\}$
C.終邊在坐標(biāo)軸上角的集合是$\{α|α=k•\frac{π}{2},k∈Z\}$
D.終邊在直線y=x上角的集合是$\{α|α=\frac{π}{4}+2kπ,k∈Z\}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知向量$\overrightarrow{a}$=(sinx,$\frac{3}{4}$),$\overrightarrow$=(cosx,-1).
(1)當(dāng)$\overrightarrow{a}$∥$\overrightarrow$時(shí),求cos2x-sin2x的值;
(2)設(shè)函數(shù)f(x)=2($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow$,已知在△ABC中,內(nèi)角A、B、C的對(duì)邊分別為a、b、c,若a=$\sqrt{3},b=2,sinB=\frac{{\sqrt{6}}}{3}$,求$f(x)+4cos(2A+\frac{π}{6})(x∈[0,\frac{π}{4}])$的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案