精英家教網 > 高中數學 > 題目詳情
函數的圖象( )
A.關于y軸對稱
B.關于直線y=-x對稱
C.關于原點對稱
D.關于y=x對稱
【答案】分析:先求出函數的定義域,判斷關于原點對稱,再由 f(-x)=-f(x),可得函數是奇函數,故它的圖象關于原點對稱,從而得出結論.
解答:解:由函數的解析式可得 >0,解得-1<x<1,故函數 的定義域為{x|-1<x<1 },關于原點對稱.
∵f(-x)====-=-f(x),
故函數 是奇函數,故它的圖象關于原點對稱,
故選C.
點評:本題主要考查對數函數的定義域,函數的奇偶性的判斷以及函數的奇偶性的應用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•哈爾濱一模)已知函數f(x)=lnx,g(x)=ex
( I)若函數φ(x)=f(x)-
x+1x-1
,求函數φ(x)的單調區(qū)間;
(Ⅱ)設直線l為函數的圖象上一點A(x0,f (x0))處的切線.證明:在區(qū)間(1,+∞)上存在唯一的x0,使得直線l與曲線y=g(x)相切.

查看答案和解析>>

科目:高中數學 來源: 題型:

二次函數的圖象頂點為A(1,16),且圖象在x軸上截得的線段長8.
(1)求這個二次函數的解析式;
(2)在區(qū)間[-1,1]上,y=f (x)的圖象恒在一次函數y=2x+m的圖象上方,試確定實數m的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•眉山一模)將函數f(x)=sin2x的導函數的圖象按向量
a
=(
π
4
,-2)
平移,則平移后所得圖象的解析式為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

出以下命題其中正確的命題有
①③④
①③④
(只填正確命題的序號).
①非零向量
a
b
滿足
a
b
,則|
a
+
b
|=|
a
-
b
|
a
b
>0,是
a
,
b
的夾角為銳角的充要條件;
③將y=lg(x-1)函數的圖象按向量
a
=(-1,0)平移,得到的圖象對應的函數為y=lgx;
④在△ABC中,若(
AB
+
AC
)•(
AB
-
AC
)=0,則△ABC為等腰三角形.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,在平面直角坐標系中,O為原點,一次函數與反比例函數的圖象相交于A(2,1)、B(-1,-2)兩點,與x軸相交于點C.
(1)分別求反比例函數和一次函數的解析式(關系式);
(2)連接OA,求△AOC的面積.

查看答案和解析>>

同步練習冊答案