【題目】已知拋物線的方程,焦點為,已知點在上,且點到點的距離比它到軸的距離大1.
(1)試求出拋物線的方程;
(2)若拋物線上存在兩動點(在對稱軸兩側(cè)),滿足(為坐標原點),過點作直線交于兩點,若,線段上是否存在定點,使得恒成立?若存在,請求出的坐標,若不存在,請說明理由.
【答案】(1) (2)存在,且坐標為
【解析】
(1)由到點的距離比它到軸的距離大1,結(jié)合拋物線定義可得,從而可得結(jié)果;(2)設,結(jié)合,可得直線,直線,與聯(lián)立,利用弦長公式求得若點存在,設點坐標為,可得,時,,從而可得結(jié)果.
(1)因為到點的距離比它到軸的距離大1,由題意和拋物線定義,,所以拋物線的方程為,
(2)由題意,,
設由,得,直線,
整理可得,
直線①若斜率存在,設斜率為,與聯(lián)立得
,
,
若點存在,設點坐標為,
,
時,,
解得或(不是定點,舍去)
則點為經(jīng)檢驗,此點滿足,所以在線段上,
②若斜率不存在,則,
此時點滿足題意,
綜合上述,定點為.
科目:高中數(shù)學 來源: 題型:
【題目】設,,其中a,.
Ⅰ求的極大值;
Ⅱ設,,若對任意的,恒成立,求a的最大值;
Ⅲ設,若對任意給定的,在區(qū)間上總存在s,,使成立,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四邊形是矩形,沿對角線將折起,使得點在平面內(nèi)的射影恰好落在邊上.
(Ⅰ)求證:平面平面;
(Ⅱ)當時,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設有編號分別為1,2,3,4,5,6,7,8的八個小球和編號為1,2,3,4,5,6,7,8的八個盒子.現(xiàn)將這八個小球隨機放入八個盒子內(nèi),要求每個盒子內(nèi)放一個球,要求編號為偶數(shù)的小球在編號為偶數(shù)的盒子內(nèi),且至少有四個小球在相同編號的盒子內(nèi),則一共有______種投放方法.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(k為常數(shù),且).
(1)在下列條件中選擇一個________使數(shù)列是等比數(shù)列,說明理由;
①數(shù)列是首項為2,公比為2的等比數(shù)列;
②數(shù)列是首項為4,公差為2的等差數(shù)列;
③數(shù)列是首項為2,公差為2的等差數(shù)列的前n項和構成的數(shù)列.
(2)在(1)的條件下,當時,設,求數(shù)列的前n項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知圓Q:(x+2)2+(y-2)2=1,拋物線C:y2=4x的焦點為F,過F的直線l與拋物線C交于A,B兩點,過F且與l垂直的直線l'與圓Q有交點.
(1)求直線l'的斜率的取值范圍;
(2)求△AOB面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若=(,),=(,),設.
(1)求函數(shù)在[0,π]上的單調(diào)減區(qū)間;
(2)在△ABC中,角A,B,C所對的邊分別為a,b,c,若,,求sinB的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的中心為,左、右焦點分別為、,上頂點為,右頂點為,且、、成等比數(shù)列.
(1)求橢圓的離心率;
(2)判斷的形狀,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的焦距為,且過點.
(1)求C的方程;
(2)若直線l與C有且只有一個公共點,l與圓x2+y2=6交于A,B兩點,直線OA,OB的斜率分別記為k1,k2.試判斷k1k2是否為定值,若是,求出該定值;否則,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com